Evidence and Decision Making in Apheresis Medicine

Robert Weinstein, MD

Past-President, World Apheresis Association Past-President, American Society for Apheresis Former Editor-in-Chief, Journal of Clinical Apheresis Professor of Medicine & Pathology University of Massachusetts Medical School Worcester, Massachusetts USA

RW

Dr. Weinstein has no conflicts, financial or otherwise, to disclose.

Rationale for Apheresis Therapy

blood substance II clinical disorder

remove substance II improve disorder

The "Harvard Death" No patient should die without... circa 1960: ...being restored to normal fluid and electrolyte status

circa 1970: ...a trial of corticosteroids

circa 1980: ...a course of plasma exchange

The Safety, Efficacy, and Cost Effectiveness of Therapeutic Apheresis (Office of Technology Assessment)

- A last resort in a wide range of diseases.
- Very few high quality studies document efficacy in actually improving health.
- Effective acute therapy in a few obscure diseases.
- Convincing proof of clinical efficacy lacking in most diseases in which apheresis is used.
- Optimal role and treatment parameters unknown.

Plasma Exchanges Charged to US Medicare 2003-2017

Leading Indications for Plasma Exchange in the United States

2017

2010

US Specialties Performing Therapeutic Plasma Exchange 2017

Journal of Clinical Apheresis

VOLUME 31 • ISSUE 3 • 2016

Special Issue Clinical Applications of Therapeutic Apheresis: An Evidence Based Approach. 7th Edition

WILEY

2010 Revised ASFA Indication Categories (with examples)

Category I	First-line therapy: primary stand-alone treatment or in conjunction with other modes of treatment. Acute Guillain-Barré Syndrome; Myasthenia Gravis
Category II	Second-line therapy: stand-alone treatment or in conjunction with other modes of treatment. <i>Photopheresis for chronic GVHD after corticosteroid failure</i>
Category III	Optimum role of apheresis therapy not established. Decision making should be individualized. DCM; Sepsis with Multiorgan Failure
Category IV	Published evidence indicates apheresis to be ineffective or harmful. IRB approval is desirable.Plasma Exchange for Active Rheumatoid Arthritis

adapted from: Szczepiorkowski ZM et al. J Clin Apheresis 2010;25:83-177

Definition of the Quality of Evidence: ACCP Modification of GRADE

Evide Quality	nce Grade	Definition
High	A	Confidence in recommendation unlikely to change with further research.
Moderate	В	Confidence in recommendation likely to be affected, and possibly changed, by further research.

Low C Confidence in recommendation very likely to be affected, and changed, by, further research.

based on Guyatt GH et al. BMJ 2008;336:924-6 Guyatt GH et al. Chest 2008;133:123S-131S Guyatt G et al. Chest 2006;129:174-81

Modified GRADE System for Recommendations for Clinical Practice

Grade of	Implications for Decision-making				
Recommendation					
	For Patient	For Clinician			
Strong (Grade 1)	Most patients would	Most patients should			
<i>"We recommend"</i>	want recommended	receive recommended			
	intervention under	intervention under these			
	similar circumstances	circumstances			
Weak (Grade 2)	Most patients would	Individualize approach to			
"We suggest"	want the recommended	helping patients decide			
88	intervention under	regarding recommended			
	similar circumstances,	intervention. Take patient's			
	but many might not	values and preferences into			
		account.			

adapted from Guyatt GH et al. Chest 2008;133:123S-131S

Fact Sheets: the Seventh ASFA Guidelines

ANCA-ASSOCIATED RAPIDLY PROGRESSIVE GLOMERULONEPHRITIS (GRANULOMATOSIS WITH POLYANGIITIS AND MICROSCOPIC POLYANGIITIS)

Incidence: 8.5/1000,000/yr	Indication	Procedure	Recommendation	Category
	Dialysis dependence ^a	TPE	Grade 1A	I
	DAH	TPE	Grade 1C	I
	Dialysis independence	TPE	Grade 2C	III
No. of reported patients: >300	RCT	CT	CS	CR
	8 (296)	1 (26)	22 (347)	NA

^aAt presentation, defined as Cr > 6 mg/dL. DAH=diffuse alveolar hemorrhage

ANTI-GLOMERULAR BASEMENT MEMBRANE DISEASE (GOODPASTURE'S SYNDROME)

Incidence: 1/1000,000/yr	Indication	Procedure	Recommendation	Category
	Dialysis dependence ^a , no DAH	TPE	Grade 2B	III
	DAH	TPE	Grade 1C	I
	Dialysis independence	TPE	Grade 1B	I
No. of reported patients: >300	RCT 1(17)	CT 0	CS 19 (468)	CR 21

^aAt presentation, defined as Cr > 6 mg/dL. DAH=diffuse alveolar hemorrhage

adapted from Schwartz J et al. J Clin Apher 2016

adapted from Schwartz J et al. J Clin Apher 2016

McLeod's Criteria for Likelihood of Benefit of Apheresis Therapy

"Plausible Pathogenesis"	A secure understanding of the disease process suggests a clear rationale for apheresis therapy.
"Better Blood"	The abnormality that makes apheresis plausible is meaningfully corrected by apheresis therapy.
"Perkier Patients"	There is strong evidence that apheresis therapy confers clinical benefit that is meaningful (not only statistically significant)

McLeod BC J Clin Apheresis 2002;17:124-132

Acute Guillain-Barré Syndrome

- Idiopathic inflammatory demyelinating polyneuropathy
 - Ascending, progressive muscle weakness, areflexia
 - Association with antecedent Campylobacter jejuni infection (60%)
 - Annual incidence: 1 to 4 per 100,000 worldwide
- Clinical course
 - Assisted ventilation: 10-25%
 - Death: 4-15%
 - Persistent mild neurological deficits: 67%
 - Persistent disabling neurological deficits: 5-15%
- Autoimmune disorder
 - Complement fixing IgM anti-peripheral nerve myelin antibodies
 - Anti-GM₁ antibodies (severe axonal involvement)
 - Anti-GQ_{1b} antibodies (Fisher's syndrome: ataxia, ophtalmoplegia, areflexia)

Rapid Response of Acute Guillain-Barré Syndrome to Plasma Exchange

from the French Cooperative Group Trial: Ann Neurol 1987;22:753-761 Ann Neurol 1992:32:94-97

	IPE	Control	ρ
Time to grade 2 (days*)	70	111	<0.001
Hospital stay (days*)	28	45	<0.001
Full strength by 1 year	71%	52%	0.007
*median			

"McLeod's Criteria" Applied to Conditions Treated by Apheresis

Condition	Plausible	Better Blood	Perkier	Recommended
	Pathogenesis		Patients	Regimen
Acute GBS	Anti-myelin	Antibody↓with	Randomized	Based on clinical
Cat I Grade 1A	Antibody	TPE	trials	trials

adapted from McLeod BC J Clin Apheresis 2002;17:124-132

Myasthenia Gravis An Autoimmune Disorder of the Neuromuscular Junction

- Autoantibody mediated
 - Acetylcholine receptor (AChR) antibodies
 - Anti-muscle-specific receptor tyrosine kinase
- Thymoma in 10-15%, esp. ♂ >40 yrs
- Variable weakness of voluntary muscles
 - Accentuated by repetitive motion
 - Alleviated by rest
 - Bulbar, extremity, trunk muscles
- Treatment
 - Acetylcholinesterase inhibitors
 - Immunosuppression
- Major role of TPE
 - Pre-op preparation for thymectomy
 - Acute exacerbations

Cartoon: Lehmann, H. C. et al. Arch Neurol 2006;63:1066-1071.

Compilation of Level II Evidence Regarding TPE for Myasthenia Gravis

Seven open studies of at least 15 patients								
Authors	Year	patients	Pred	Immunosuppressor	TPE/pt	L exchanged	Effect (%)	
Behan	1979	21	Y	Υ	?	16-32	100	
Dau	1981	60	48	48	9-33		73	
Olarte	1981	21	13	12	2-10		81	
Perlo	1981	17	?	?	3-5		65	
Fornasari	1985	33	11	11	4-8		61	
Antozzi	1991	70	?	?	2		70	
Chiu	2000	94	?	?	4-5		85	
Total		316					76.4	

"No adequate randomised controlled trials have been performed to determine whether plasma exchange improves the short- or longterm outcome for myasthenia gravis. However, many case series studies report short-term benefit from plasma exchange in myasthenia gravis, especially in myasthenic crisis. Further research is need to compare plasma exchange with alternative short-term treatments for myasthenic crisis and to determine the value of long-term plasma exchange for treating myasthenia gravis."

Gajdos P, Chevret S, Toyka K. Plasma exchange for myasthenia gravis. *Cochrane Database of Systematic Reviews* 2002, Issue 4. Art. No.:CD002275. DOI: 10.1002/14651858.CD002275.

Controlled Trials of TPE in Myasthenia Gravis

Authors	Study Design	Population	Intervention	Outcome Measures	Results
Goti P et al.	Non-	9 patients with	Baseline of	Pulmonary volumes	Decrease in FRC and RV
Thorax	randomized,	grade IIb	treatment with	 Inspiratory and 	Increase in FEV1, MIP
1995;50:1080	baseline to	myasthenia	pyridostigmine	expiratory muscle force	Increase in MEP
-6.	treatment		compared to	Respiratory muscle	TPE vs pyridostigmine (p<0.05).
			treatment with	strength, Ventilatory	
			TPE	pattern	
				 Inspiratory time 	
				 Expiratory time 	
				 Total time of 	
				respiratory cycle	
				 Tidal volume 	
Nagayasu T	Retrospective,	51 patients with	19 patients:	Incidence of MG crisis	TPE vs CONTROL
et al. Jpn J	cohort study	MG treated with	1 TPE prior to	Pharmacologic	•Crisis within 1 year post-op:
Thorac		trans-sternal	thymectomy.	remission and	5.3% vs 28.1% (p=0.049);
Cardiovasc		thymectomy		improvement rate,	•Crisis within 30 days post-op:
Surg			32 patients:	evaluated by graded	0 vs 15.6% (p=0.0724).
2005;53:2-7.			thymectomy	scale	 Improvement rate:
			alone.		100% vs 81.3% (p=0.0466).
					•Complete remission (5-7 yrs):
					79% vs 50% (p=0.0427) .

adapted from Cortese I et al. Neurology 2011;76:294-300

"McLeod's Criteria" Applied to Conditions Treated by Apheresis

Condition	Plausible	Better Blood	Perkier	Recommended
	Pathogenesis		Patients	Regimen
Acute GBS	Anti-myelin	Antibody↓with	Randomized	Based on clinical
Cat I Grade 1A	Antibody	TPE	trials	trials
Myasthenia Gravis	ACh-receptor	↓ ACh receptor	Strong but	? optimal regimen
Cat I Grade 1B	Antibody	Antibody	anecdotal	

adapted from McLeod BC J Clin Apheresis 2002;17:124-132

Focal Segmental Glomerulosclerosis

- 15-20% of idiopathic nephrotic syndrome
- 30% recurrence post-transplant
 - 50% graft loss within 2 years
 - Higher risk with presentation before age 20
 - Up to 80% recurrence in subsequent graft
- Circulating permeability factor? (*suPAR*?)
 - Disease transferable to animals with patient plasma
 - 30-50 kDa protein
 - Sensitive to heat, proteolysis, [NH₄]₂SO₄
- Treatment: controversial?
 - Corticosteroids, cytotoxic drugs
 - ACE inhibitors
 - Apheresis approach to circulating permeability factor?

Permeability Factor and Proteinuria in Focal Segmental Glomerulosclerosis

from Savin VJ et al. N Engl J Med 1996;334:878-83

Plasma Exchange in Recurrent FSGS After Kidney Transplant

Patient number	FSGS diagnosis post transplant	Recurrence days post transplant	Number of PE Procedures	Urinary protein Pre 1st TPE	n (U.P.) (g/24 h) Post TPE	Percentage decrease in U.P.	Post PE follow-up U.P.
1	Clinical	3	6	4.0	0.3	92	0.3 g/24 h 2 weeks
2	Clinical	3	10	40.0	0.2	99	0.2 g/24 h 2 months
3	Biopsy	5	8	11.0	6.0	45	Not available
4	Clinical	7	5	5.9	0.4	93	0.2 g/24 h 1 year
5	Clinical	7	11	4.0	0.3	92	0.3/24 h 3 months
6	Clinical	7	5	4.2	0.6	85	Negative 1.5 years
7	Biopsy	11	5	8.0	2.4	70	0.3 g/24 h 11 months
8	Biopsy	26	5	4.0	3.7	8	0.2 g/dl 2.5 year
9	Biopsy	66	5	6.1	0.2	97	Negative 9 months
10	Biopsy	52	11	11.0	6.0	45	0.8 g/24 h 11 months
11	Biopsy	> 700	6	3.0	1.5	50	0.4 g/24 h 5.5 year
		(2 years)					B

All were on immunosuppressive drugs.

Shariatmadar S and Noto TA. J Clin Apheresis 2002;17:78-83

10 High-Risk Patients with FSGS who Received TPE Peri-Transplantation

Patient	Follow-up	Induction	Current	Recurrence	Proteinuria	Rejection	Serum
	(days)	therapy*	immuno-		(g/day)		creatinine
			suppression**				(mg/dL)
1	1258	Т	T/M/P	Ν	0.30	Ν	1.0
2	980	В	T/M/P	Ν	0.19	Ν	1.1
3	959	В	T/M/P	Ν	0.39	Y	1.8
4	749	Т	T/I	Y	4.75	Ν	2.6
5	735	В	T/M/P	Ν	0.81	Y	1.3
6	699	Т	R/I/P	Ν	0.39	Ν	2.0
7	644	В	T/M/P	Ν	0.33	Ν	1.5
8	962	В	T/I/P	Y	37.1	Ν	HD
9	238	Т	T/M/P	Y	7.5	Ν	HD
10	287	Т	T/M/P	Ν	0.59	Ν	0.9

*T = thymoglobulin; B = basiliximab.

**T = tacrolimus; M = mycophenolate mofetil; P = prednisone.

from Gohh et al. Am J Transplant 2005;5:2907-12

"McLeod's Criteria" Applied to Conditions Treated by Apheresis

Condition	Plausible Pathogenesis	Better Blood	Perkier Patients	Recommended Regimen
Acute GBS Cat I Grade 1A	Anti-myelin antibody	Antibody↓with TPE	Randomized trials	Based on clinical trials
Myasthenia Gravis Cat I Grade 1B, 1C	ACh-receptor Antibody	↓ ACh receptor Antibody	Strong but anecdotal	? optimal regimen
Focal Segmental Glomerular Sclerosis (recurrent post transplant) Cat I Grade 1B (2016)	Permeability factor (PF)	↓PF ↓Proteinuria	Largely anecdotal. Small numbers	Variable Not determined

McLeod's Criteria for Likelihood of Benefit of Apheresis Therapy

"Plausible Pathogenesis"	A secure understanding of the disease process suggests a clear rationale for apheresis therapy.
"Better Blood"	The abnormality that makes apheresis plausible is meaningfully corrected by apheresis therapy.
"Perkier Patients"	There is strong evidence that apheresis therapy confers clinical benefit that is meaningful (not only statistically significant).

McLeod BC J Clin Apheresis 2002;17:124-132

Corollary Considerations

- Is the problem potentially reversible with apheresis therapy?
- Is there a first-line or standard therapy?
 - Has it been tried?
 - Outcome?
- If apheresis to be tried, is the goal of a therapeutic trial defined?

Individualize Apheresis Decision Making for Patients with Rasmussen's Encephalitis

• 22 y/o \bigcirc with RE since age 8 yrs

- Major partial seizures Q 15 min
- Cognitive decline (7-8 y/o level)
- Right hemiparesis (wheelchair)
- Anti-GluR3 negative
- Therapies applied
 - Anticonvulsants partial control
 - Surgery transient \downarrow seizures
 - IVIG no response
- Plasma exchange (since 5/2/2008)
 - Initially 3 TPE per week
 - Weekly since Sept 2008
 - Ambulatory
 - $\downarrow \downarrow$ seizures
 - − ↑ cognitive function

Maintained for many years with intermittent TPE

68 year old \bigcirc with CMML

Parin	hora	Blood
	IIGIAI	Divvu.

WBC	45,000/µl
HCT	31.8%
MCV	73.7 FL
PLT	3,000/µL
Mono	3,400/µL

Bone Marrow:

 Cellularity 95%
 Morphology dysplastic
 Megakaryocytes ↓↓↓
 Iron: absent

 Image: Comparison of the second second

Severe Symptomatic Thrombocytopenia

Clinical manifestations

- Petechial rash & spontaneous ecchymoses
- Severe, constant hematochezia
- Retrotympanic bleeding \rightarrow hearing loss
- Attempts to manage thrombocytopenia & hemorrhage
 - IVIG
 - Steroids
 - RBC transfusion
 - Platelet transfusion
- HLA phenotype: A23, A66, B7, B41
- > 40% PRA on HLA antibody screen
- HLA antibody specificities
 - Broad spectrum
 - Class I and II

A2, A30, A31, A32, A33, A36, A68, A69 B35, B45, B51, B52, B53, B57 DR4, DR7, DQ7, DQ8

- Initial platelet crossmatching
 - 7 crossmatch panels
 - 2 of 117 (1.7%) apheresis platelet units compatible

Platelet Support of Patient PK

Evidence Based Medicine: Caveats

"...integrat[e] individual clinical expertise with the best available external clinical evidence ..."

"Without clinical expertise, practice risks becoming tyrannized by evidence...[which may be] inapplicable to an individual patient."

"Without current best evidence, practice risks becoming rapidly out of date."

adapted from Sackett DL et al. BMJ 1996;312:71-2.

Using Available Tools for Clinical Decision Making in Apheresis Medicine

- Indication Categories ASFA Fact Sheets
 - Where does apheresis fit into treatment scheme
 - Assessment of strength of published evidence
- McLeod's Criteria
 - Framework for taking stock of available dataPlausibility of achieving benefit with apheresis
- Corollary Considerations
 - Framework for incorporating clinical judgment
 - Formulation of specific therapeutic trial

Apheresis at the Bedside

Evidence X Knowledge _ Rational Apheresis Individualized Judgment - Decision Making

