

Renal disease and pregnancy

Dr. Vesna D. Garovic Professor of Medicine Division of Nephrology and Hypertension Department of Obstetrics and Gynecology Mayo Clinic Rochester, MN

> Division of NEPHROLOGY & HYPERTENSION

> > ©2011 MFMER | 3152771-1

Physiological Changes of Pregnancy

- Physiological hydronephrosis, which is more prominent on the right side
 - Progesterone-induced ureteral smooth muscle relaxation
 - Ureteral compression 2nd to the enlarging uterus
- GFR increases by up to 50%
 - Elevations in cardiac output
 - †renal blood flow

 - Cr of 0.9 may indicate underlying renal disease

Pregnancy and Renal Disease

Pregnancy in Patients with Renal Disease

- Physiological increase in protein excretion
 - Increased GFR
 - †permeability of the glomerular basement membrane
 - Further exaggerated in patients with proteinuric renal disease, with worsening of proteinuria in 3rd trimester
- Pregnancy affects immune system
 - Altered Th1/Th2 balance, with Th2 polarization
 - ↓ Cell-mediated immunity, which could be detrimental to the allogeneic fetus
 - † Production of antibodies
 - ? Auto-antibodies
 - SLE: disease of women of childbearing age

Pregnancy Effects on Preexisting Renal Disease

- Most important determinant of progression of renal insufficiency is renal function at the time of conception
- Possible contributing factors
 - Hypertension
 - ↑ Proteinuria during pregnancy
 - Urinary tract infections

Pregnancy in Patients with Chronic Renal Insufficiency

Risk factors for complications of pregnancy

• \downarrow GFR

- Hypertension
- Nephrotic range proteinuria
 - Advanced maternal age
- Underlying disease: poorly controlled DM, active SLE

Pregnancy in Patients with **Preexisting Renal Disease**

- Spontaneous abortions 8%
- Prematurity 19%
- Perinatal loss 13%

• Preeclampsia 30%

Jungers, 1997

• IUGR 50%

Pregnancy in Patients with Preexisting Renal Disease

- The most important determinant of progression of renal insufficiency is renal function at the time of conception
- Possible contributing factors
 - Hypertension
 - ↑ Proteinuria during pregnancy
 - Urinary tract infections

- No prior history of hypertension
- Presented at 20 weeks gestation with
 - Preeclampsia
 - Placental abruption
 - Intrauterine fetal death
- At 6 weeks FU 160/90 on labetalol

- Right atrophic kidney nephrectomy
 HTN resolved
- Uncomplicated pregnancy the following year

Risk of Worsening of Renal Function in Pregnancy by GFR

Pregnancy Effects on Preexisting Renal Disease

Progression of Renal Insufficiency

- No adverse effect with Cr<1.4 mg/dL (124 µmol/L) and normal BP
- \uparrow progression if Cr \geq 1.4 mg/dL (124 µmol/L)
- Cr ≥3.0 mg/dL (265 µmol/L); pregnancy losses and maternal morbidity
- Role of underlying disease
 - SLE/LN
 - In remission for 6 months

- Decreased fertility
- Menses: 10% early reports, 42% more recent
- Anovulatory cycles
- Normal estradiol levels
- $\bullet \oslash \mathsf{LH} \ \mathsf{OR} \ \mathsf{FSH} \ \mathsf{surges}$
- Low progesterone
- [↑]Prolactin in 70-90%

Frequency of conception

- More frequent (2^o Erythropoietin)
- 1.4% per year Saudi Arabia
- 0.3% per year Belgium
- 0.5% per year USA

Frequency of conception in HD patients 2-3X >PD, due to

- Endocrine differences
- PD itself: tubal obstruction 2^o to peritonitis
- Ovum damage 2^o to hypertonic dextrose
- Impaired transport of ovum

Pregnancy in Dialysis Patients NPDR^{*}

- Possible after 20 years of dialysis
- Conception rates as a function of time on dialysis
- Prematurity 85%
- IUGR 36%
- Congenital anomalies 10%
- Improved infant survival in women on dialysis<1 yr prior to conception
- The National Registry for Pregnancy in Dialysis Patients

- Conception rates as a function of time on dialysis
 Possible after 20 yrs of dialysis
- Repeated pregnancies, 318 NPDR^{*}
 - 8 Women x2
 - 8 Women x3
 - 1 Woman x4
 - The National Registry for Pregnancy in Dialysis Patients

Diagnosis of Pregnancy

- Urine test unreliable
- HCG levels borderline elevated in non-pregnant dialysis patients
- Ultrasound-for Dx and staging of pregnancy

- ↑ Incidence of hydramnios
- Fetus: Osmotic diuresis caused by \uparrow BUN
- Intensive dialysis: Adjustments in Dialysate Composition ↑K⁺, ↓ Ca⁺⁺
- HCO₃ adjustment due to physiological respiratory alkalosis of pregnancy

Anticoagulation

- Pregnancy: [↑]Coagulability
- Heparin-does not cross placenta
- Coumadin-does cross placenta, Teratogenic in the 1ST trimester, fetal bleeding in the 3RD trimester

- Pregnancy Outcomes NPDR
- Prematurity 85%
- IUGR 36%
- Congenital anomalies 10%
- Improved infant survival in women on dialysis<1 yr prior to conception

Infant Survival

- EDTA^{*} 115 Pregnancies \rightarrow 23%
- Saudi Arabia 30%
- NPDR 222 Pregnancies, 141 reaching the second trimester \rightarrow 55%

European Dialysis and Transplant Association

Daily HD treatments

- \downarrow Fetal exposure to metabolic waste products
- \downarrow Interdialytic weight gains
- \downarrow Risk for hypotension with fluid removal
- Initial data from NPDR: improved outcome

ESRD and HD during Pregnancy

• Direct Comparison (excluding terminations)

- The Toronto Pregnancy and Kidney Disease (PreKid) Clinic and Registry
 - N=22
 - 18 established ESRD patients
 - 4 approaching ESRD
- The American Registry for Pregnancy in Dialysis Patients
 - N= 70
 - 57 established ESRD patients
 - 13 approaching ESRD

Hladunewich et al. JASN May 2014

- No reason to change either form of dialysis to another because of pregnancy
- PD: ↓ Volume and ↑ Frequency as pregnancy progresses or CAPD+ CCPD
- PD- Surgery should be performed extraperitoneally, can be resumed 24 hours post surgery

Intensified HD - Benefits

- Blood Pressure
- Left Ventricular Hypertrophy & Systolic Function
- Arterial Compliance
- Restores Endothelial Function
- Cardiac Autonomic Nervous System

- Phosphate
- Anemia
- Malnutrition
- Inflammation
- Cognition
- Fertility
- Quality of Life
- Quality of Sleep

MAYO Perl J and Chan C. AJKD. 2009; 54(6): 1171-1184.

Intensified HD during Pregnancy

Pregnancy Outcomes	Toronto	USA	P Value
Live Birth Rate (Entire Cohort)	19 (86%)	43 (62%)	0.030
1st Trimester Loss	1 (5%)	5 (7%)	
2nd Trimester Loss	0 (0%)	14 (20%)	
Neonatal Death	1 (5%)	5 (7%)	
Still Birth	1 (5%)	3 (4%)	
Live Birth Rate (ESRD only)	15 (83%)	30 (53%)	0.020
Among Patients with Established ESRD			
Dialysis Time (Hours/Week)	43±6	17±5	<0.001
Gestational Age (Weeks)	36 (32-37)	27 (21-35)	0.002
Among Patients with Renal Failure During Pregnancy			
Dialysis Time (Hours/Week)	33±6	15±4	<0.001
Gestational Age (Weeks)	35 (29-37)	33 (31-37)	NS
All Pregnancies (Except 1st and 2nd Trimester Losses)			
Dialysis Time (Hours/Week)	42±7	17±5	<0.001
Birth Weight (grams)	2118±857	1748±949	NS
Among Surviving Infants in Established ESRD Patients			
Normal Birth Weight	8 (50%)	10 (32%)	NS
Low Birth Weight (<2500g)	7 (44%)	12 (39%)	
Very Low Birth Weight (<1500g)	1 (6%)	9 (29%)	

Hladunewich et al. JASN May 2014

MAYO

Management Strategy

Dialysis Prescription

- 6-8 hours/day, 6-7 days per week
 Minimum 36 hours

Avoid Intra Dialytic Hypotension

Low blood flow rates

Polyhydramnios

- Fetal solute divresis secondary to increased placental BUN
- Adjust HD prescription

Postpartum

- Go back to conventional temporarily
- Transplant

Management Strategy

Vitamins, Minerals and Diet	Double dose of MVI
	Folic acid 5 mg daily
	Unrestricted Diet
	 Daily protein intake 1.5-1.8 g/kg/day
Electrolytes	• 3 mEQ/L K bath
Bone Health	Dialysate Calcium at least 1.75 mmol/L
	Close f/u PO4
	Follow PTH
Anemia	IV and oral iron to maintain normal stores
	• ESA to target a hemoglobin of 110 g/L
Volume Status	Monthly then weekly volume assessments
Hypertension	• Target post-dialysis BP < 140/90 mmHg
	Hladunewich et al. Seminars in Dialysis 2011

Questions?

