

Preeclampsia and Future Cardiovascular, Chronic and End-stage Renal Disease

Dr. Vesna D. Garovic

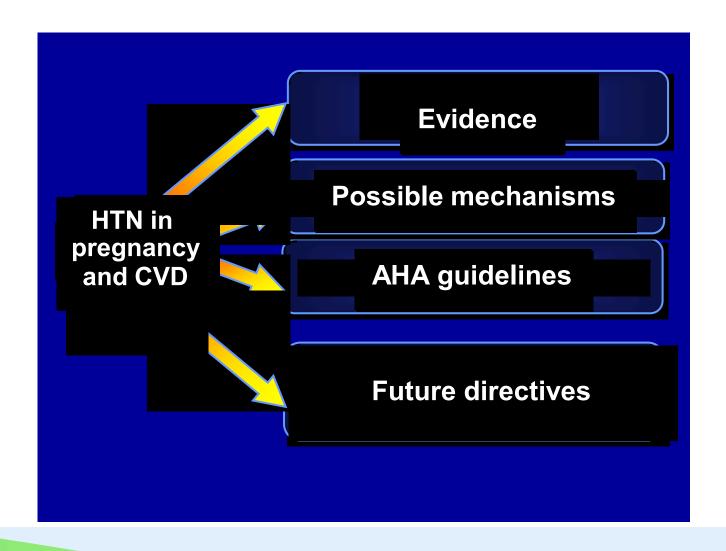
Professor of Medicine

Division of Nephrology and Hypertension

Department of Obstetrics and Gynecology

Mayo Clinic, Rochester, MN

Division of NEPHROLOGY & HYPERTENSION


Conflict of interest and Funding

No conflict of interest

Funding P-50 AG44170

Pregnancy hypertension and future CVD

Preeclampsia-eclampsia

- Affects 5% of all pregnancies worldwide
- Remains a leading cause of maternal and fetal morbidity and mortality
- In USA, pregnancy-related mortality 14.5/100,000 livebirths (1998-2005); 12% due to pregnancy HTN

Berg et al. Obstet Gynecol 2010

- Increasing trend in USA in pregnancy relatedhospitalizations with stroke, ↑54% ('94→'07)
 - with hypertensive disorders as a leading cause

Preeclampsia and Future CVD?

- Studies in 1970's and 1980's: Preeclampsia does not herald future HTN
- No difference in in the prevalence of HTN and CVD mortality and morbidity between eclamptic women and age-matched controls after 33 years
 - Small sample sizes
 - Suboptimal control groups

Associations between HTN pregnancy disorders and CVD are increasingly recognized

- A population-based retrospective cohort study in Ontario, Canada, of 1.03 million women free from CVD before their first documented delivery
- Maternal placental syndromes: preeclampsia, gestational hypertension, placental abruption, and placental infarction
- HR 2.0 for CVD for women who had had a MPS compared with women who had not
- This risk was higher in MPS plus poor fetal growth (3.1) or MPS plus intrauterine fetal death (4.4)

14 403 women in the Child Health and Development Studies pregnancy cohort - the Kaiser Permanente Health Plan in California

 The risk of subsequent cardiovascular disease death was notably higher among women with onset of preeclampsia by 34 weeks of gestation

Mongraw-Chaffin, Hypertension, 2010

Meta-analysis

- The relative risks (95% CI)
- HTN 3.70 (2.70 to 5.05) after 14.1 years
- CHD 2.16 (1.86 to 2.52) after 11.7 years
- Stroke 1.81 (1.45 to 2.27) after 10.4 years
- Venous thromboembolism 1.79 (1.37 to 2.33) after 4.7 years.
- Overall mortality after pre-eclampsia: 1.49 (1.05 to 2.14) after 14.5 years

 Bellamy et al. BMJ, 2007

Limitations

- Small sample sizes
- Short follow-up
- Lack of racial and ethnic diversity
- Registry-based designs
- Limited number of outcomes

Garovic and Hayman NCPN, 2007

Specific Aims

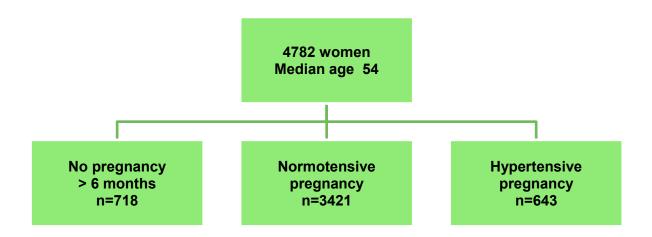
In a large multiracial cohort, test association of HTN pregnancy disorders with

- Subsequent hypertension
 - CHD
 - Stroke

Garovic et al. J Hypertens, 2010

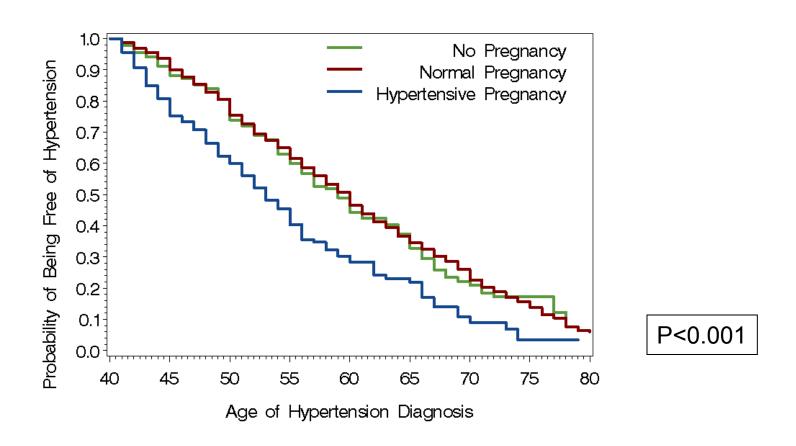
Study Design

- 4782 women from FBPP sibships with ≥ 2 members diagnosed with HTN age < 60 years
- Medical history: DM, Stroke, CHD, HTN
- Smoking
- Family history
- Physical examination
- Blood biochemistries

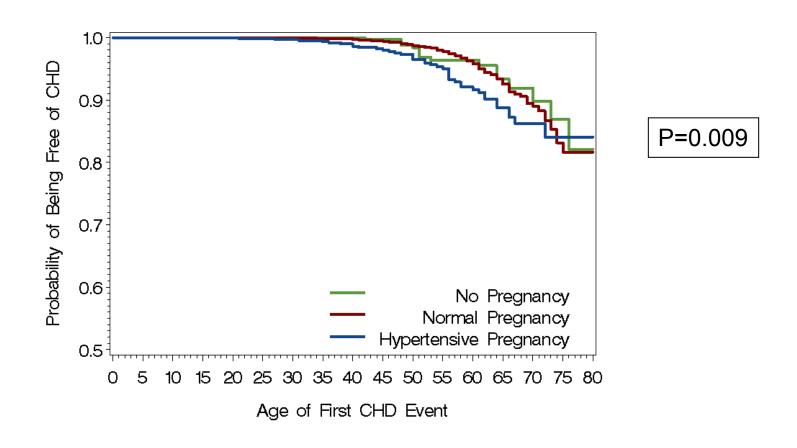

Pregnancy Questionnaire

- At least one pregnancy > 6 months?
- How many?
- During any of these pregnancies, did a physician ever tell you that you had high blood pressure or hypertension?

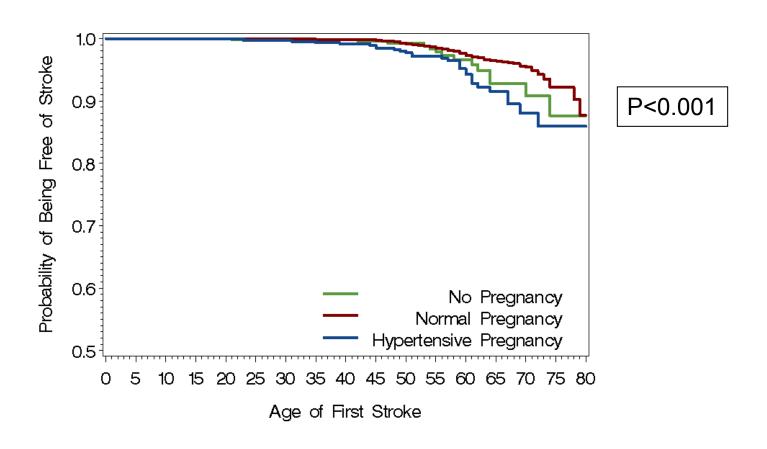
Garovic et al. AJOG, 2008



Sample Description



HTN Later in Life



CHD Later in Life

Stroke Later in Life

Adjusted HR for HTN after Age 40, CHD, and Stroke-FBPP

Group contrasts	HTN after age 40			CHD			Stroke		
	HR	95% CI	Р	HR	95% CI	Р	HR	95% CI	Р
Normotensive vs. Nulliparous	0.88	0.73- 1.08	0.22	1.02	0.60- 1.75	0.94	0.55	0.31- 1.00	0.050
Hypertensive vs. Normotensive	1.55	1.26- 1.89	<.001	1.14	0.78- 1.68	0.50	1.86	1.16- 2.98	0.010

Adjusted HR for HTN after Age 40, CHD, and Stroke-GENOA

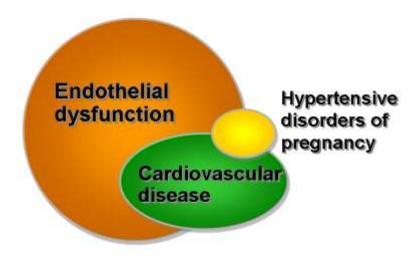
Group	HTN after age			CHD			Stroke		
contrasts		40							
	HR	95% CI	Р	HR	95% CI	Р	HR	95%C I	Р
Normotensive vs. Nulliparous	0.78	0.59- 1.04	0.09	0.84	0.39- 1.82	0.67	0.61	0.27- 1.40	0.24
Hypertensive vs. Normotensive	1.88	1.49- 2.39	<.001	0.65	0.32- 1.30	0.22	2.10	1.19- 3.71	0.010

Conclusions

May represent an independent risk factor for future HTN and CVD

- The association with CHD might have been underestimated given the age of the FBPP cohort
- ? The mechanisms underlying this association

Risk for Atrial fibrillation and CHF


- Retrospective large cohort study (Ontario, Canada)
- Women with placental abruption, placental infarction, preeclampsia, and gestational HTN
- 61% relative increase in the risk for HF and dysrhythmia

Ray et al. Heart, 2012

Association between preeclampsia and future CVD

Due to shared risk factors Endothelial dysfunction

£394029006.4d.

Association between preeclampsia and future CVD

Due to shared risk factors Endothelial dysfunction

Association between preeclampsia and future CVD

- May cause metabolic and vascular changes that modify future risks
 - Brachial artery endothelium-dependent dilatation impaired 3 years post PE pregnancies

Chambers et al. JAMA 2001

Possible independent risk factor?

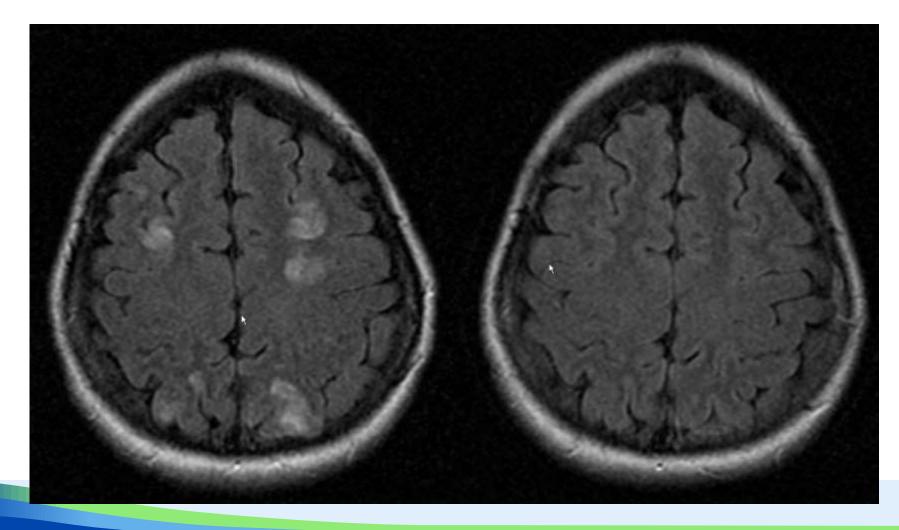
Eclampsia and Posterior Reversible Encephalopathy Syndrome (PRES)

- PRES first described in 1996, in 15 patients, 3 with eclampsia
 - Clinical signs and symptoms: headaches, visual changes, lethargy, seizures and
 - Radiological findings: vasogenic edema involving posterior circulation
- In pregnancy at considerably lower BP elevations (SBP 150-170 mm Hg) compared to hypertensive encephalopathy (SBP 180-200 mm Hg)

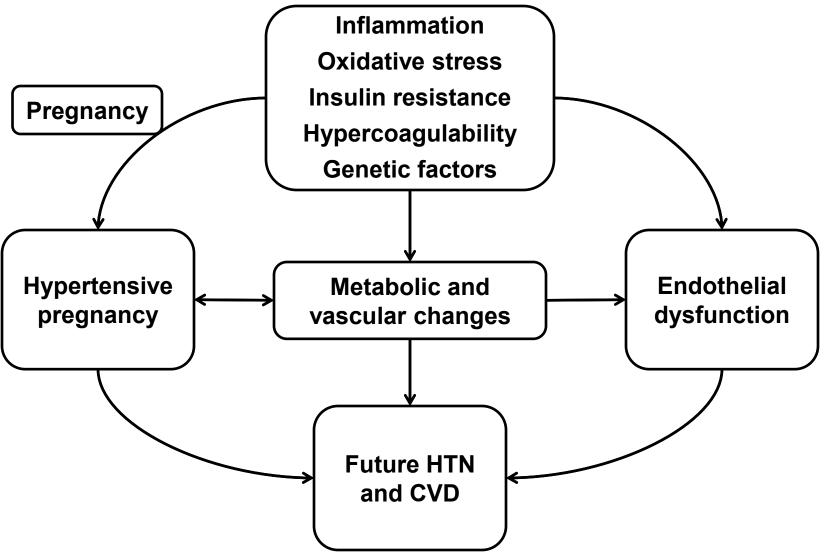
Hinchey et al. NEJM 1996

Eclampsia and Posterior Reversible Encephalopathy Syndrome (PRES)

 In a prospective study of 27 women with eclampsia, 25 had PRES, and 5 demonstrated persistent neuroimaging abnormalities (gliosis)


Zeeman et al. AJOG, 2004

- Mayo study
 - 7 of 22 patients with eclampsia underwent neuro-imaging
 - All 7 demonstrated signs of PRES
 - Maximum SBP > 180 mm Hg in 2/7
 - Persistent neuroimaging abnormalities (1/7)


Wagner et al. MCP 2011

23 year old, G3 /P1 presenting with headache, blurred vision, and seizure, peak SBP 151mm Hg; f/u MRI 2 weeks postpartum: punctuate T2 abnormality in the right superior frontal lobe

Possible mechanisms of the association of pregnancy hypertension, endothelial dysfunction, and future HTN and CVD

Hypertension in pregnancy and future cardiovascular damage

ORIGINAL ARTICLE

Left ventricular hypertrophy after hypertensive pregnancy disorders

Scantlebury DC, et al. Heart 2015 doi:10.1136/heartjnl-2015-308098

Hypertension in pregnancy and future cardiovascular vascular damage

Atherosclerosis 229 (2013) 212-216

Contents lists available at SciVerse ScienceDirect

Atherosclerosis

Hypertension in pregnancy is a risk factor for peripheral arterial disease decades after pregnancy

Tracey L. Weissgerber ^a, Stephen T. Turner ^a, Kent R. Bailey ^b, Thomas H. Mosley Jr. ^c, Sharon L.R. Kardia ^d, Heather J. Wiste ^b, Virginia M. Miller ^e, Iftikhar J. Kullo ^f, Vesna D. Garovic ^a. *

Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA

Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, RO-MA-19-E 19NEP, Rochester, MN 55905, USA

Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA

CUniversity of Mississippi Medical Center, Jackson, MS, USA

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA

^eDepartments of Surgery, Physiology and Biomedical Engineering Mayo Clinic, Rochester, MN, USA

Hypertension in pregnancy and future cardiovascular damage-mediators

Original Article

Hypertension in pregnancy is associated with elevated C-reactive protein levels later in life

Catherine M. Brown^a, Stephen T. Turner^a, Kent R. Bailey^b, Thomas H. Mosley Jr^c, Sharon L.R. Kardia^d, Heather J. Wiste^b, Iftikhar J. Kullo^e, and Vesna D. Garovic^a

J of Hypertens 2013 31:2213–2219

Hypertension in pregnancy and future cardiovascular damage- mediators

Hypertension in pregnancy is associated with elevated homocysteine levels later in life

Wendy M. White, MD; Stephen T. Turner, MD; Kent R. Bailey, PhD; Thomas H. Mosley Jr, PhD; Sharon L. R. Kardia, PhD; Heather J. Wiste, BA; Iftikhar J. Kullo, MD; Vesna D. Garovic, MD

Am J Obstet Gynecol 2013;209:454.e1-7.

Hypertension in pregnancy and future cardiovascular damage- mediators

Uric Acid: A Missing Link Between Hypertensive Pregnancy Disorders and Future Cardiovascular Disease?

Tracey L. Weissgerber, PhD; Natasa M. Milic, MD, PhD; Stephen T. Tumer, MD; Reem A. Asad, MD; Thomas H. Mosley Jr, PhD; Sharon L.R. Kardia, PhD; Craig L. Hanis, PhD; and Vesna D. Garovic, MD

Mayo Clin Proc. 2015

2011 AHA Guidelines for the Prevention of CVD in women

- Postpartum: monitored and treated for modifiable risk factors
- Questions re: HTN in pregnancy should become a routine part of medical history
- Future studies of exposures and events across a woman's lifespan-need for population based studies

Mosca et al. Circulation, 2011

2014 AHA Guidelines for the Prevention of Stroke in women

- Increased risk during pregnancy, post-partum, and years after
- Prospective studies on the pathophysiology underlying the association, especially in diverse populations
- These studies will provide evidence to inform screening, prevention, and treatment strategies in women with a history of HTN in pregnancy

Bushnell et al. Stroke, 2014

Preeclampsia and ESRD

Recent studies have shown association of preeclampsia and ESRD

Large registry study in Norway 1976-2004 of 570,433 women

- Increased risk of ESRD after preeclamptic pregnancy
 - RR 3.2 after single preeclamptic pregnancy
 - RR 15.5 after multiple preeclamptic pregnancies

Vikse et al, NEJM, 2008

- Insurance claims data from 1998-2009 in Taiwan
 - Increased risk of CKD (HR 9.3) and ESRD (HR 12.4) after hypertensive pregnancy

Wang et al, CMAJ, 2013

Hypertension in pregnancy and future CVD and CKD/ESRD

ORIGINAL PAPER

Hypertension in Pregnancy Is a Risk Factor for Microalbuminuria Later in Life

Andrea G. Kattah, MD; ¹ Reem Asad, MD; ¹ Dawn C. Scantlebury, MBBS; ² Kent R. Bailey, PhD; ³ Heather J. Wiste, BA; ³ Steven C. Hunt, MD; ⁴ Thomas H. Mosley, PhD; ⁵ Sharon L. R. Kardia, PhD; ⁵ Stephen T. Turner, MD; ¹ Vesna D. Garovic, MD¹

From the Division of Nephrology and Hypertension, Mayo Clinic; Division of Cardiovascular Diseases, Mayo Clinic; Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN; Department of Internal Medicine, University of Utah, Salt Lake City, UT; Department of Neurology, University of Mississippi, Jackson, MS; and Department of Epidemiology, University of Michigan, Ann Arbor, MI[®]

Original Investigation

Preeclampsia and ESRD: The Role of Shared Risk Factors

Andrea G. Kattah, MD,¹ Dawn C. Scantlebury, MBBS,² Sanket Agarwal, MBBS,¹ Michelle M. Mielke, PhD,^{3,4} Walter A. Rocca, MD, MPH,^{3,4} Amy L. Weaver, MS,⁵ Lisa E. Vaughan, MS,⁵ Virginia M. Miller, PhD,⁶ Tracey L. Weissgerber, PhD,¹ Wendy White, MD,⁷ and Vesna D. Garovic, MD¹

From the Division of Nephrology and Hypertension, Mayo Clinic; Division of Cardiovascular Diseases, Mayo Clinic; Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN; Department of Internal Medicine, University of Utah, Salt Lake City, UT; Department of Neurology, University of Mississippi, Jackson, MS; and Department of Epidemiology, University of Michigan, Ann Arbor, MI

- 8 of 44 (18%) cases versus 4 of 88 (5%) controls had preeclamptic pregnancies (unadjusted OR, 4.0; 95% CI, 1.21-13.28)
- Evidence of kidney disease prior to the first pregnancy in 9 of 44 (21%) cases and 1 of 88 (<1%) controls

- Results were similar after independent adjustment for race, education, diabetes, and hypertension prior to pregnancy
- However, the association was attenuated and no longer significant after adjustment for obesity (OR, 3.25; 95% CI, 0.93-11.37)

- Our findings confirm that there is a sizable association between preeclampsia and ESRD
- However, obesity is a previously unexplored confounder
- Pre-existing kidney disease was common, but not consistently coded or diagnosed

CVD in Offspring

- Barker's hypothesis: The famine of !944 or the "Hunger Winter" during WWII
- previously well-nourished population
- the liberation of the Netherlands in 1945 restored the food supply
- maternal under-nutrition led to IUGR and higher risks of chronic conditions in adult life

CVD in Offspring

- Barker's hypothesis: fetal origins of adult disease, AKA Fetal Programming
 - Inadequate maternal diet → the baby changes its metabolism to prepare for food shortages
 - Metabolic processes result in IUGR
 - When the living environment switches from malnutrition to abundant supply of nutrients
- Preeclampsia: abnormal placental development
 - Mother: preeclampsia phenotype
 - Fetus: IUGR

IUGR and Cardiovascular Disease

- Obesity
- Insulin resistance
- Metabolic syndrome
- Hyperlipidemia
- Reduced nephron number

IUGR and Cardiovascular Disease

- Increased risk for DM2
- Obesity
- Increased risk for CVD (HTN, MI, CHF)
- CVD mortality

HTN in Pregnancy and Future CVD Risk in Siblings

- A sibling history of HTN in pregnancy was associated with
 - An increased risk of hypertension in brothers and unaffected sisters
 - An increased risk of cardiovascular events was seen in brothers only

HTN in pregnancy is a novel familial risk factor for CVD

Weissgerber et al. JASN, 2015

Future Directives

- Longitudinal studies of women with HTN in pregnancy
 - Pregnancy HTN as an independent CVD risk
 - Renal outcomes, A fib, CHF
- Improved screening and treatment of hypertensive pregnancy disorders may impact not only pregnancy outcomes, but future health of the affected women

Questions?

Treatment of Hypertension in Pregnancy

- Poorly controlled, retrospective observations of different types of HTN
- Great divergence of opinion
- "Shamefully few" well-designed studies

US Department of Health and Human Services 2001-2004

Women 45-54: 35.2 %

Women 55-64: 54.4%

Our Data

- HTN in pregnancy: 50% HTN by age 53
- Normotensive pregnancy: 50% HTN by age 60

