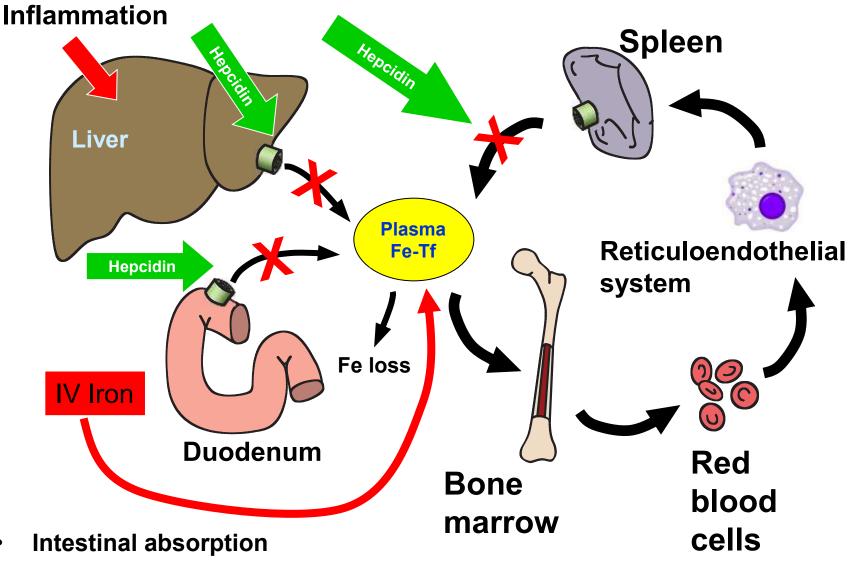
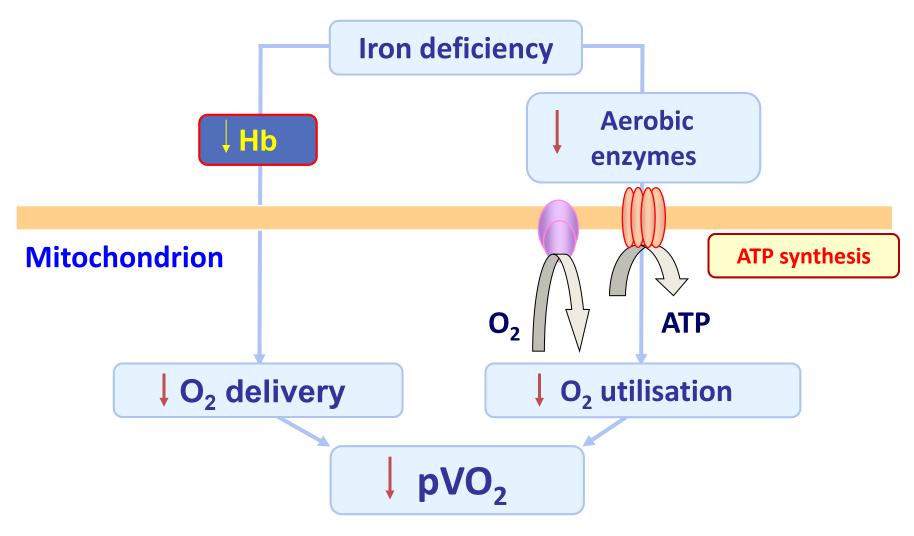
Iron metabolism – anemia and beyond

Jacek Lange Perm, 8 October 2016

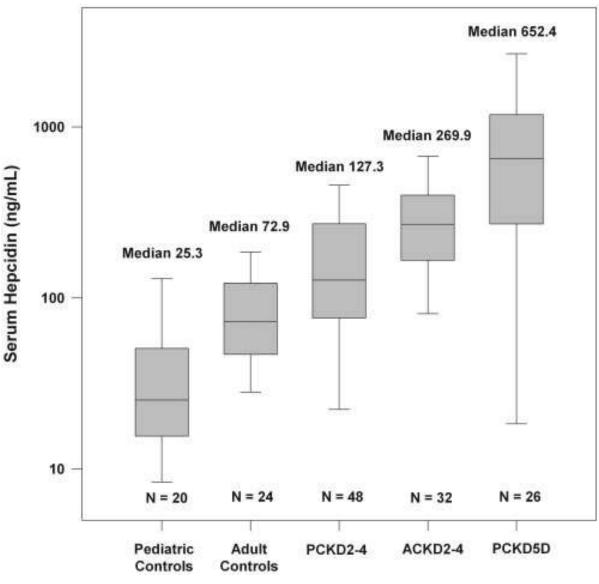


- 1. Iron metabolism
- 2. CKD Chronic Kidney Disease
- 3. Iron deficiency beyond anemia and CKD
- 4. Conclusions

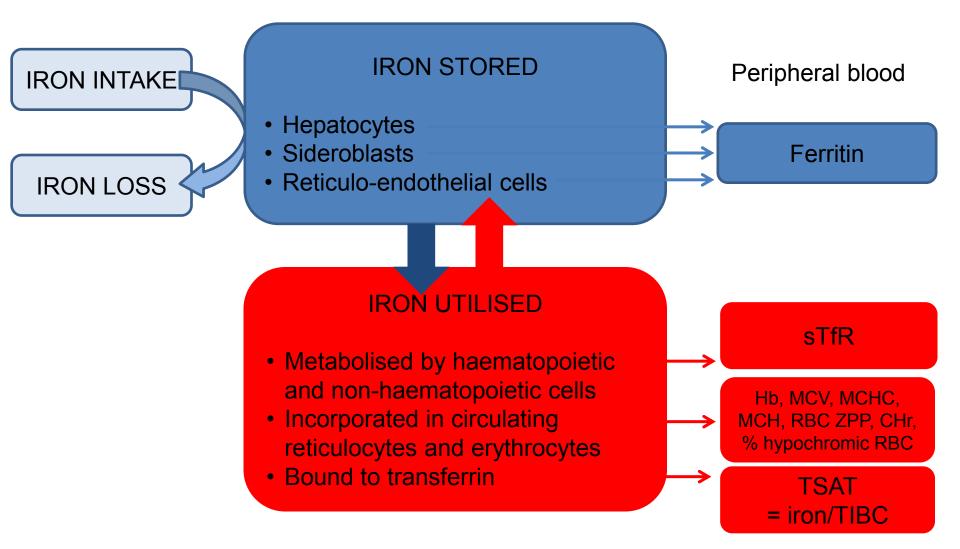
Why iron deficiency in CKD?


- 1. Impaired iron absorption
 - Level of intoxication local inflammation in digestional tract
 - General inflammation due to uremia
 - Hepcidin
- 2. Iron loss
 - Loss of few mls in every HD session = * 156 times / year
 - Loss through digestional tract
 - Other bleedings (Heparin, LMWH, local inflammation)
- 3. Functional iron deficiency due to ESA

Absorption of oral iron in inflammation


Release from hepatic cells and macrophages

Dual effects of iron deficiency: defective oxygen delivery and utilization


	Α	В	С	D	E	F	G	н	I	J	к	L
1												
2												
3						THE R. A. STREET, N						
4					HE BE			C-Inder Control 1				
5	R											
6			4 4 - 4		1-14 to Martin							
7					限							
8					REX							
9												
10												and the second s

Hepcidin – a potential biomarker of Iron status in Chronic Kidney Disease

Zaritsky J et al.: Clin J Am Soc Nephrol 2009;4:1051-1056

Iron storage and utilisation: interpretation of circulating biomarkers

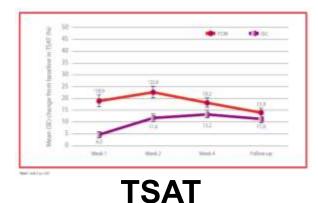
Modified from Jankowska et al. Eur. Heart J 2013

Iron sucrose (Venofer[®]) facilitates ESA dose optimalization in HD patients


Study	Design	n	Venofer® dose	Baseline Hb (g/dL)	Duration	Change in ESA dose vs baseline
Richardson 2001	Consecutive patients	386	N x50 mg iron as Venofer [®]	11.3	24 months	~47% reduction
	Single-center					
Li 2008	Randomized Single-center	26	200 mg iron/week for 4 weeks then 200 mg iron every 2 weeks for 4 weeks	8.9	8 weeks	~20% reduction
Schiesser 2006	Single-arm Multicenter	50	24 x50 mg iron as Venofer [®] weekly	12.1	6 months	~38.5% reduction (darbepoetin) 6.3/8.3% (epoetin alfa/beta)
Descombes 2000	Single arm Single-center	25	Dose adjusted by serum ferritin level	11.5	18 months	~32% reduction
Hussain 1998	Two arm Single-center	20	100 mg iron as Venofer [®] twice weekly or oral iron	7.8-8.0	3 months	~25% reduction versus oral iron

Iron sucrose in hemodialysis – extensive safety profile – 13,5 mln patients

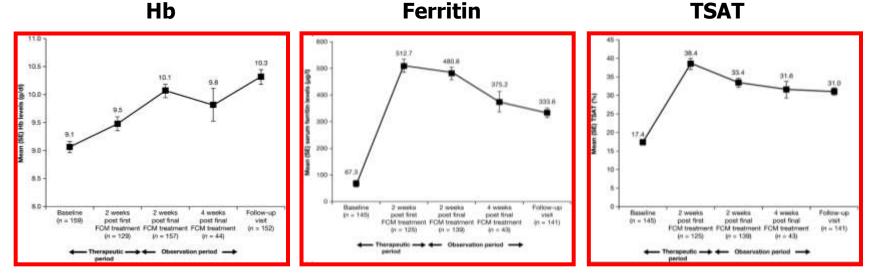
Study	Dosing	n	Duration	Safety outcomes
Aronoff ¹ 2004	10x100 mg iron as Venofer [®]	665	Mean 101 days	No serious or life-threatening adverse events reported
Charytan ² 2001	10x100 mg iron as Venofer [®]	77	8 weeks	No serious adverse events or withdrawals due to drug-related adverse events observed
Richardson ³ 2001	N x50 mg iron as Venofer [®]	386	24 months	Venofer [®] withheld in only 2 out of 386 patients. Good safety profile
Schiesser ⁴ 2006	24 x50 mg iron as Venofer [®] weekly	50	6 months	No serious adverse events or hypotensive episodes. Only one AE was classified as possibly related to Venofer [®]
Hussain ⁵ 1998	100 mg iron as Venofer [®] twice weekly	10	3 months	No adverse events reported


FCM in HD patients (Evenpoel 2009)

200 mg of iron 2-3 times a week according to requirements, FCM (n = 119) vs. IS (n = 118)

Serum ferritin conc.

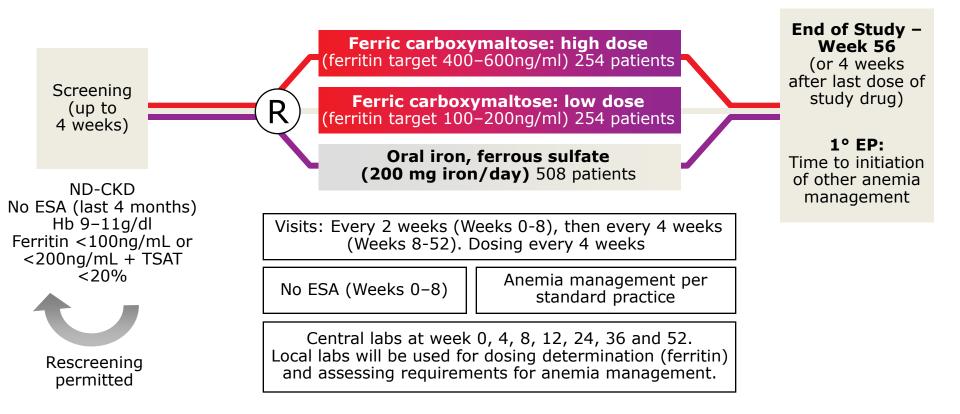
Evenepoel A et al. Abstract/Poster ASN 2009 San Diego


FCM in HD (Covic et al., 2010)

Responders = Proportion of patients attaining an

increase in Hb ≥1.0 g/dl

- FCM 100-200 mg at each HD session for a max. 6 weeks.
- n=163
- 120 patients -> ESA
- 63 patients -> no ESA


Covic A et al. Nephrol Dial Transplant 2010 25: 2722–2730

FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia

Iain C. Macdougall¹, Andreas H. Bock², Fernando Carrera³, Kai-Uwe Eckardt⁴, Carlo Gaillard⁵, David Van Wyck⁶, Bernard Roubert⁷, Jacqueline G. Nolen⁷ and Simon D. Roger⁸ on behalf of the FIND-CKD Study Investigators[†]

NDT Advance Access published June 2, 2014


FIND-CKD: Study design

 Primary endpoint: Time to initiation of other anemia management (e.g. ESA or blood transfusion) Macdougall IC et al. J Am Soc Nephro

Macdougall IC et al. J Am Soc Nephrol 2009; 20: 660A (SA-PO2402)

Results – primary endpoint

- 1. The increase in the Hb level significantly greater with high sF FCM versus oral iron.
- The hematological response <u>faster</u>, and the proportion of patients with an increase in Hb level ≥ 1 g/dL significantly greater with high sF FCM versus oral iron or low sF FCM.

Results – secondary endpoint

Table 2. Secondary efficacy endpoints

	High ferritin FCM (n=153)	Low ferritin FCM (n=152)	Oral iron (n=308)
Blood transfusion, n (%)	12 (7.8)	11 (7.2)	26 (8.4)
Hb increase ≥1 g/dL, n (%)	87 (56.9)*	52 (34.2)	99 (32.1)
Change from baseline to mo	nth 12 (least squares me	ean [SE])	
Hb, g/dLª	1.4 (0.1)**	0.9 (0.1)	1.0 (0.1)
Ferritin, µg/L ^b	451 (10)***	81 (11)***	137 (8)
TSAT, % ^b	15.8 (1.3)	8.5 (1.3)+	13.8 (1.0)
eGFR, mL/min/1.73m ^{2c}	0.4 (0.8)	-1.6 (0.8)	-1.1 (0.6)

* Prior to first initiation of other anemia management

^a Measured up to the point at which other anemia therapy was initiated and/or study drug was discontinued ^c MDRD formula

* p<0.001 versus low ferritin FCM and oral iron (Kaplan-Meier estimates, log rank test)</p>

** p=0.014 versus oral iron

*** p<0.001 versus oral iron

+p=0.001 versus oral iron

VIEWS & REVIEWS

Restless legs syndrome associated with major diseases

A systematic review and new concept

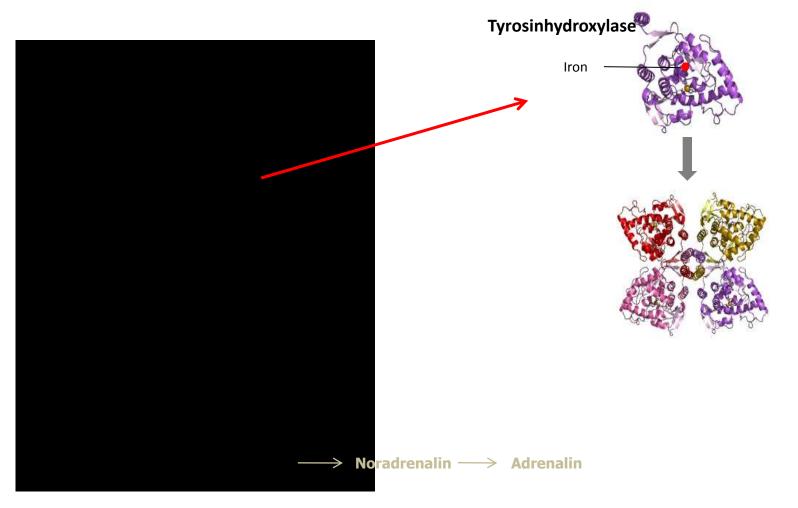
Neurology, March 2016

ABSTRACT

Claudia Trenkwalder, MD Richard Allen, PhD Birgit Högl, MD Walter Paulus, MD Juliane Winkelmann, MD

Recent publications on both the genetics and environmental factors of restless legs syndrome (RLS) defined as a clinical disorder suggest that overlapping genetic risk factors may play a role in primary (idiopathic) and secondary (symptomatic) RLS. Following a systematic literature search of RLS associated with comorbidities, we identified an increased prevalence of RLS only in iron deficiency and kidney disease. In cardiovascular disease, arterial hypertension, diabetes, migraine, and Parkinson disease, the methodology of studies was noor, but an association might be possible. There is insuf-

Kidney disease


• Pregnancy

Cardiovascular disease and arterial hypertension

- With some association:
- Polyneuropathy und painsyndroms
- Parkinson Syndromes including.
- Multiple Sclerosis, Migraine

Iron deficiency with and without anemia above all of that ??

Dopamine and Iron

Iron deficiency and COPD

Open Access

Research

To cite: Nickol AH, Frise MC, Cheng H-Y, et al. A crosssectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open 2015:5: e007911. doi:10.1136/ bmjopen-2015-007911

Prepublication history for this paper is available online. To view these files please visit the journal online (http://dx.doi.org/10.1136/ bmjopen-2015-007911).

Received 9 February 2015 Revised 28 May 2015 Accepted 15 June 2015

BMJ Open A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease

> Annabel H Nickol,^{1,2} Matthew C Frise,² Hung-Yuan Cheng,² Anne McGahey,¹ Bethan M McFadyen,¹ Tara Harris-Wright,¹ Nicole K Bart,² M Kate Curtis,² Shivani Khandwala,³ David P O'Neill,² Karen A Pollard,² F Maxine Hardinge,¹ Najib M Rahman,¹ Andrew E Armitage,³ Keith L Dorrington,² Hal Drakesmith,³ Peter J Ratcliffe,⁴ Peter A Robbins²

- Non-anaemic iron deficient patients more hypoxaemic •
- Essential role of iron as a factor of key cellular pathways •

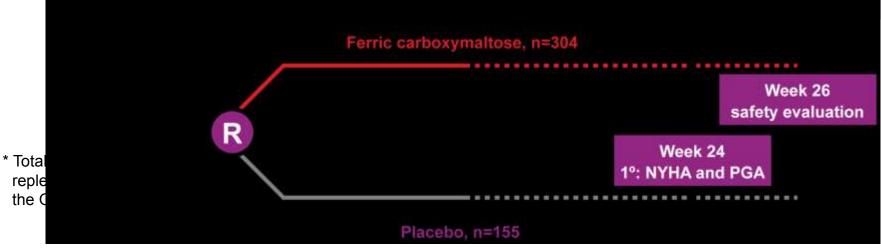
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency

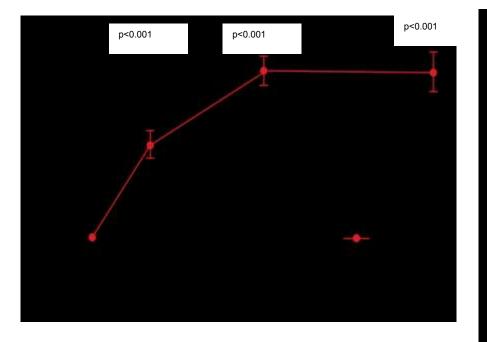
Stefan D. Anker, M.D., Ph.D., Josep Comin Colet, M.D., Gerasimos Filippatos, M.D., Ronnie Willenheimer, M.D., Kenneth Dickstein, M.D., Ph.D., Helmut Drexler, M.D.,* Thomas F. Lüscher, M.D., Boris Bart, M.D., Waldemar Banasiak, M.D., Ph.D., Joanna Niegowska, M.D., Bridget-Anne Kirwan, Ph.D., Claudio Mori, M.D., Barbara von Eisenhart Rothe, M.D., Stuart J. Pocock, Ph.D., Philip A. Poole-Wilson, M.D.,* and Piotr Ponikowski, M.D., Ph.D., for the FAIR-HF Trial Investigators;

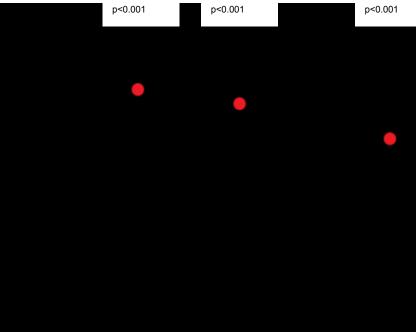
NEJM 2009


FAIR-HF study design

Main inclusion criteria:

- NYHA class II/III, LVEF ≤40% (NYHA II) or ≤45% (NYHA III)
- Hb: 9.5–13.5 g/dL
- Iron deficiency: serum ferritin <100 μg/L or <300 μg/L, if TSAT <20%</p>
- Treatment adjustment algorithm:
 - Interruption: Hb >16 g/dL or serum ferritin >800 μ g/L or serum ferritin >500 μ g/L, if TSAT >50%
 - Restart: Hb <16 g/dL and serum ferritin <400 µg/L and TSAT<45%


• Blinding:


- Clinical staff: unblinded and blinded personnel
- Patients: usage of curtains and black syringes for injections

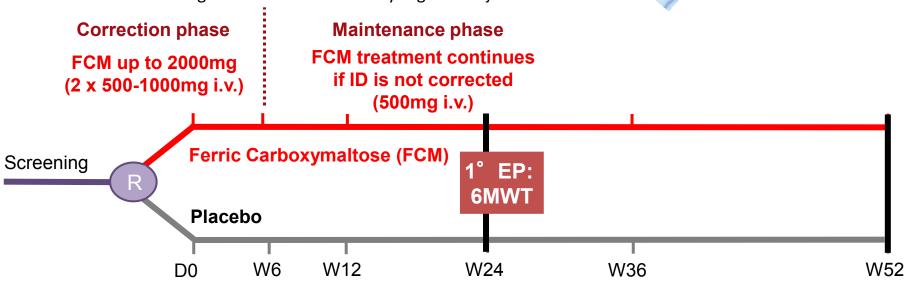
FAIR-HF results

6-minute walk test

NYHA functional class

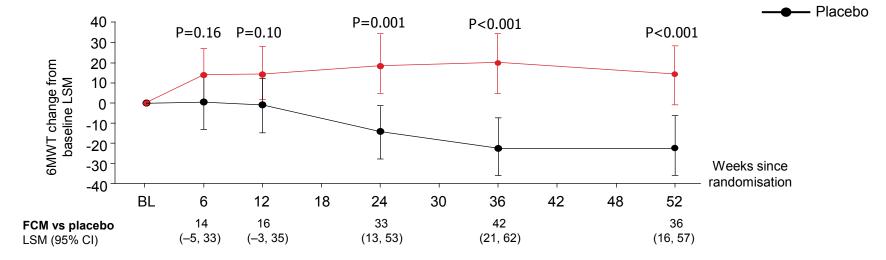
Anker SD, et al. N Engl J Med 2009;361:2436–48.

CONFIRM-HF Study design

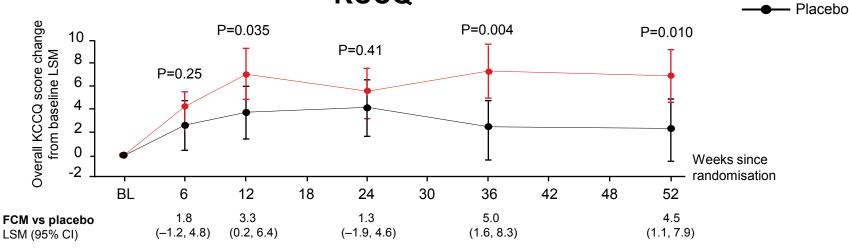


CONFIRM-HF

- **Design:** Multicentre, randomised (1:1), double-blind, placebo-controlled
- Main inclusion criteria:
 - NYHA class II / III, LVEF ≤45%
 - BNP > 100 pg/mL or NT-proBNP > 400 pg/mL
 - Iron deficiency: serum ferritin <100 ng/mL or 100-300 ng/mL if TSAT <20%
 - Hb < 15 g/dL</p>



- Clinical staff: unblinded and blinded personnel
- Patients: usage of curtains and black syringes for injections



Ponikowski P et al. Eur Heart J 2014; Epub ahead of print

Secondary endpoints: Changes in 6MWT distance and QoL over time 6MWT

KCCQ

KCCQ – Kansas City Cardiomyopathy Questionare

Ponikowski P et al. *Eur Heart J* 2014; Epub ahead of print

FCM

Secondary endpoints: Outcome events

	FCM (N=150)		Placebo (N=151)			
End-point or event	Total events (n)	Incidence/ (100 patient risk-year)	Total events (n)	Incidence/ (100 patient risk-year	Time to first event Hazard ratio 95% Cl	P- value
Death for any CV reason	11	11 (8.1)	12	12 (8.5)	0.96 (0.42 – 2.16)	0.91
Hospitalisation for any CV reason	26	21 (16.6)	51	33 (26.3)	0.63 (0.37 – 1.09)	0.097
FCM reduced the ris	k of recu	irrent hospita	alisations	due to wors	ening HF (pos	t hoc):

Hazard Ratio (95% CI) – 0.30 (0.14-0.64), p=0.0019


Ponikowski P et al. Eur Heart J 2014; Epub ahead of print

ESC Guidelines HF 2016

Recommendations for the treatment of other co-morbidities in patients with heart failure

Recommendations	Class ¹	Level [®]	Ref ^c
Iron deficiency			A
Intravenous FCM should be considered in symptomatic patients with HFrEF and iron deficiency (serum ferritin <100 µg/L, or ferritin between 100–299 µg/L and transferrin saturation <20%) in order to alleviate HF symptoms, and improve exercise capacity and quality of life.	lla	A	469, 470

KDIGO Anemia Guideline

KDIGO Anemia Guideline

- 2.1.1 When prescribing iron therapy, balance the potential benefits of avoiding or <u>minimizing blood transfusions</u>, ESA therapy, and anemia-related symptoms against the risks of harm in individual patients (e.g., anaphylactoid and other acute reactions, unknown long-term risks). *(Not Graded)*
- 2.1.2 For adult CKD patients with anemia <u>not on iron or ESA</u> therapy we suggest a <u>trial of IV iron</u> (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):
- 2.1.3 For adult CKD patients <u>on ESA therapy</u> who are not receiving iron supplementation, we suggest <u>a trial of IV iron</u> (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):

Goals:

•an increase in Hb concentration without starting ESA treatment and

•TSAT is \leq 30% and ferritin is \leq 500 ng/ml

Conclusions

1. Can we use IV iron in CKD patients (RLS? COPD? CHF?)? <u>YES, WE CAN</u>. We even have to.

2. Is oral iron possible to be used?

Yes, it is.

BUT

- in most cases the ID is 1,5 2,0 g;
- absorbtion of 1-2 mg/day;

Compliance?

3. Is every iron the same?

No, there is a individualization needed.

4. Iron deficiency is not only Iron deficiency anemia !!!

Спасибо Большое

Thank you for your attention