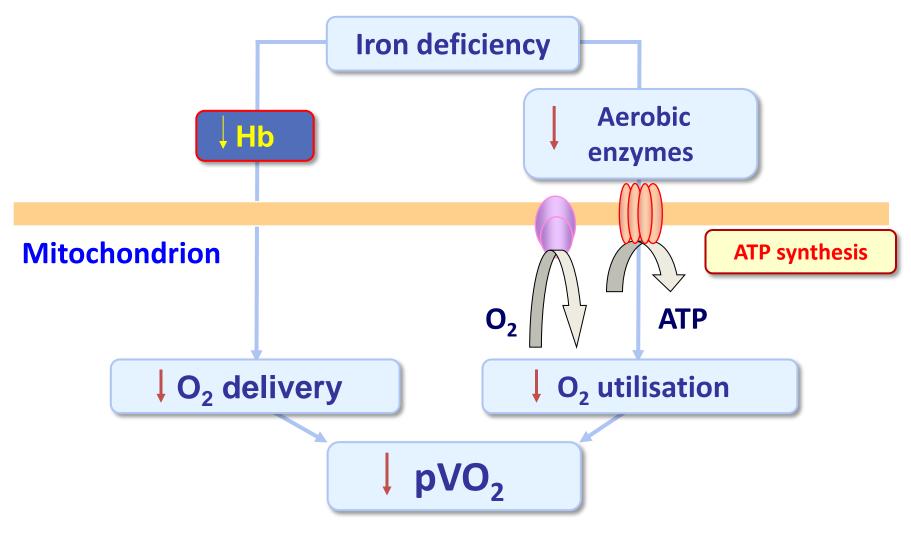
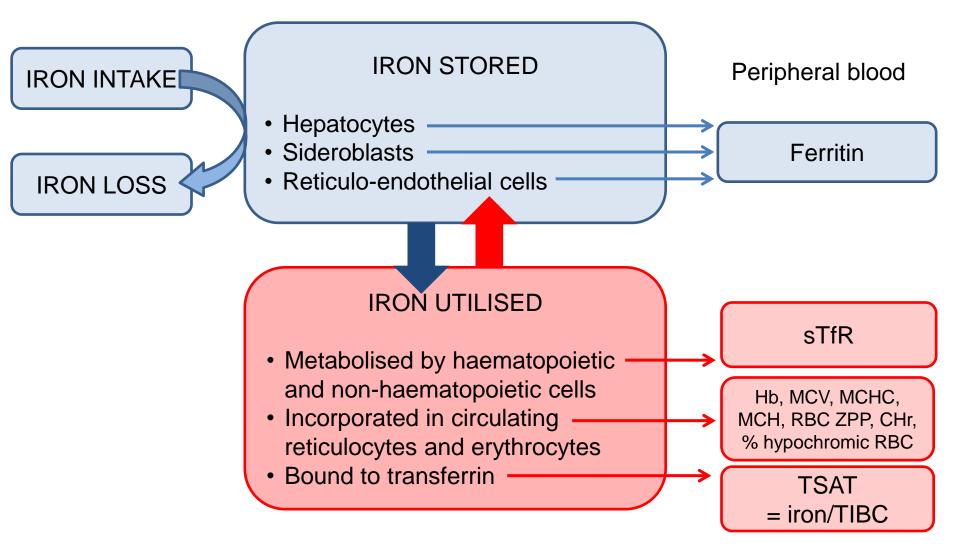

Iron metabolism – anemia and beyond

Jacek Lange Khabarovsk, October 2015

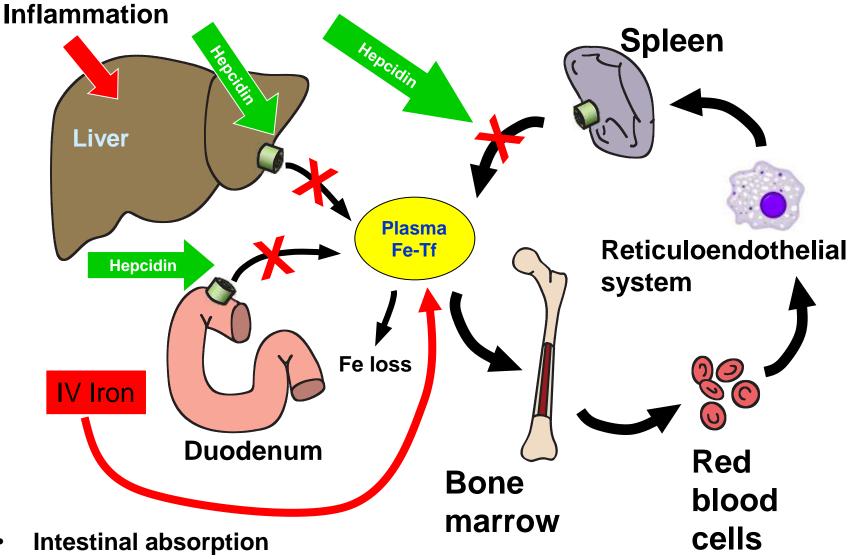


- 1. Iron metabolism
- 2. CKD
- 3. CHF
- 4. Conclusions

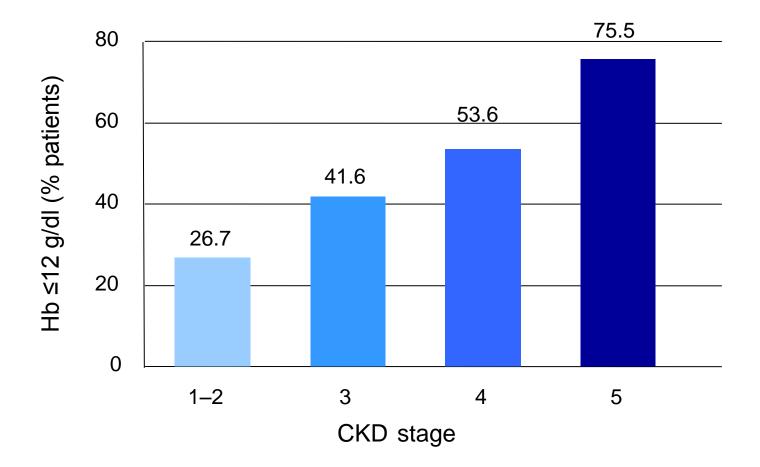
Under normal healthy conditions, daily iron intake equals daily iron loss (1–2 mg/day)



Dual effects of iron deficiency: defective oxygen delivery and utilization


Anker SD, et al. Eur J Heart Fail 2009 Haas JD, Brownlie T IV. J Nutr 2001 Dallman PR. J Intern Med 1989

Iron storage and utilisation: interpretation of circulating biomarkers

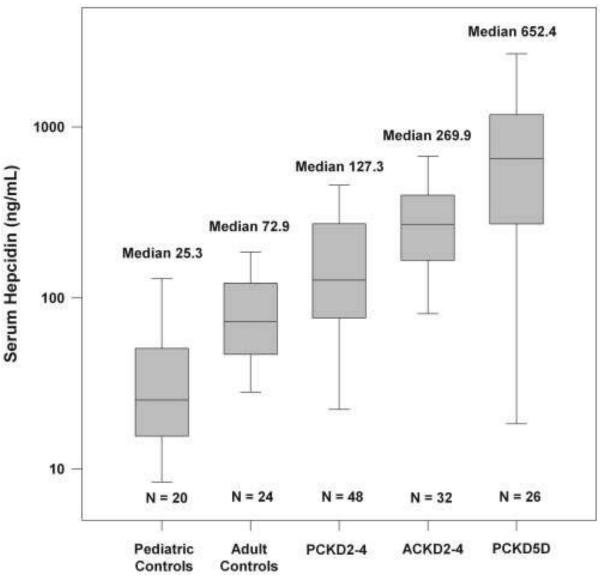

Modified from Jankowska et al. Eur. Heart J 2013

Absorption of oral iron in inflammation

Release from hepatic cells and macrophages

Anemia is frequent in patients with CKD

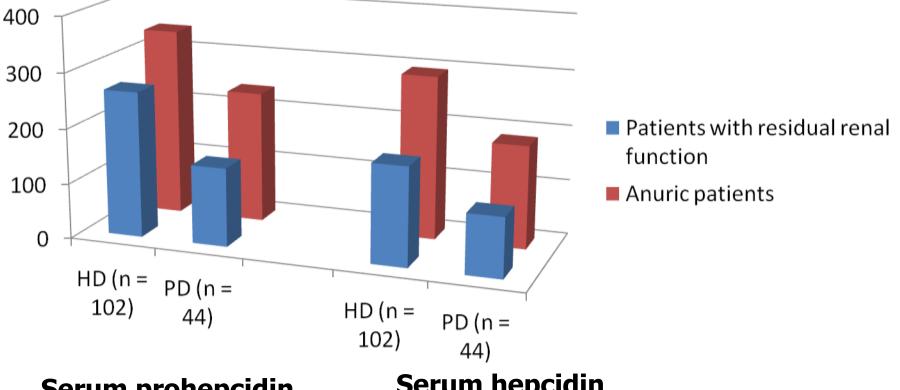
Cross-sectional, US multicenter survey of 5,222 adult patients at 237 physician practices


McClellan W et al. Curr Med Res Opin 2004; 20: 1501-1510

Why anemia in CKD?

1. EPO

- Impaired production
- Impaired receptors' function
- 2. Impaired iron absorption
 - Level of intoxication local inflammation in digestional tract
 - General inflammation due to uremia
 - Hepcidin
- 3. Iron loss
 - Loss of few mls in every HD session = * 156 times / year
 - Loss through digestional tract
 - Other bleedings (Heparin, LMWH, local inflammation)
- 4. Functional iron deficiency due to ESA & inflammation
- 5. Impaired vitamins' intestinal absorption Vit B12, folic acid


Hepcidin – a potential novel biomarker of Iron status in Chronic Kidney Disease

Zaritsky J et al.: Clin J Am Soc Nephrol 2009;4:1051-1056

Inflammation vs. iron balance in **PD** and **HD** patients

Assessment of prohepcidin and hepcidin in serum, urine, and ultrafiltrate/peritoneal effluent

Serum hepcidin Serum prohepcidin

Malyszko J et al.: Type of renal replacement therapy and residual renal function may affect prohepcidin and hepcidin. Ren Fail 2009;31(10):876-883

Iron sucrose (Venofer[®]) facilitates ESA dose optimalization in HD patients

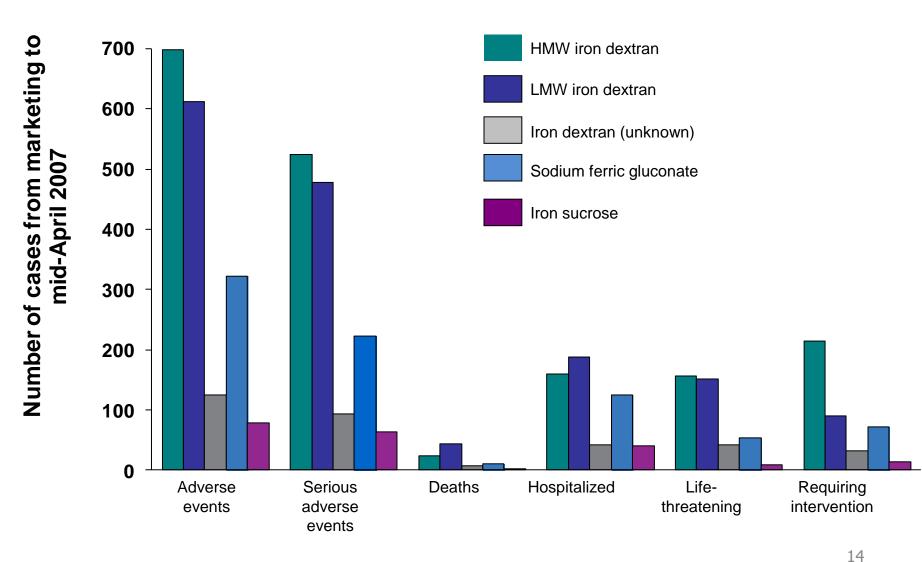
Study	Design	n	Venofer [®] dose	Baseline Hb (g/dL)	Duration	Change in ESA dose vs baseline
Richardson 2001	Consecutive patients Single-center	386	N x50 mg iron as Venofer [®]	11.3	24 months	~47% reduction
Li 2008	Randomized Single-center	26	200 mg8.9iron/week for 4weeks then 200mg iron every 2weeks for 4weeks		8 weeks	~20% reduction
Schiesser 2006	Single-arm Multicenter	50	24 x50 mg iron as Venofer [®] weekly	12.1	6 months	~38.5% reduction (darbepoetin) 6.3/8.3% (epoetin alfa/beta)
Descombes 2000	Single arm Single-center	25	Dose adjusted by serum ferritin level	11.5	18 months	~32% reduction
Hussain 1998	Two arm Single-center	20	100 mg iron as Venofer [®] twice weekly or oral iron	7.8-8.0	3 months	~25% reduction versus oral iron

Richardson D et al. Am J Kidney Dis 2001;38:109-117 Li H et al. Blood Purif 2008;26:151-6 Schiesser D et al. Nephrol Dial Transplant 2006;21:2841-2845 Descombes E et al. Nephron 2000;84:196-197 Hussain R et al. Nephrology 1998;4:105-108

Iron sucrose in hemodialysis – extensive safety profile – 13,5 mln patients

Study	Dosing	n	Duration	Safety outcomes
Aronoff ¹ 2004	10x100 mg iron as Venofer [®]	665	Mean 101 days	No serious or life-threatening adverse events reported
Charytan ² 2001	10x100 mg iron as Venofer [®]	77	8 weeks	No serious adverse events or withdrawals due to drug-related adverse events observed
Richardson ³ 2001	N x50 mg iron as Venofer [®]	386	24 months	Venofer [®] withheld in only 2 out of 386 patients. Good safety profile
Schiesser ⁴ 2006	24 x50 mg iron as Venofer [®] weekly	50	6 months	No serious adverse events or hypotensive episodes. Only one AE was classified as possibly related to Venofer [®]
Hussain ⁵ 1998	100 mg iron as Venofer [®] twice weekly	10	3 months	No adverse events reported

Safety comparison of I.V. iron preparations Switch from Iron Dextran/Iron Gluconate to Iron Sucrose


Study	y Design		History of intolerance	Safety outcomes		
Van Wyck 2000 ¹	Single-arm Multi-center	23	Iron dextran	No serious adverse drug reactions or drug discontinuation due to any drug-related adverse event		
Charytan 2004 ²	Pooled data from 4 prospective studies	130	Iron dextran and/or iron gluconate	No serious adverse events		
Aronoff 2004 ³	Single-arm Single-center	80*	Iron dextran and/or iron gluconate	No drug-related serious adverse events		
Haddad 2009 ⁴	Single-arm Single-center	15	Iron dextran	No hypersensitivity reaction to Venofer [®]		

Van Wyck DB et al. Am J Kidney Dis 2000;36:88-97
 Charytan C et al. Nephron Clin Pract 2004;96:c63-66

 Aronoff GR et al. Kidney Int 2004;66:1193-1198
 Haddad A et al. Saudi J Kidney Dis 2009;20:208-211

*80 patients among a total population of 665

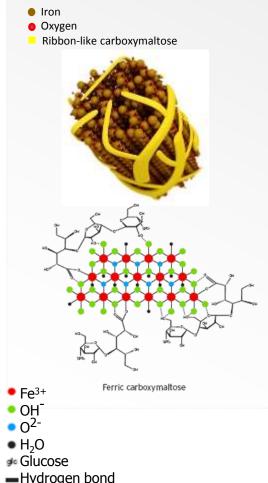
Wysowski et al, 2010

Wysowski DK et al. Am J Hematol 2010;85:650-654

Properties of ferric carboxymaltose (Ferinject®)

Ferric Carboxymaltose:

• Water soluble



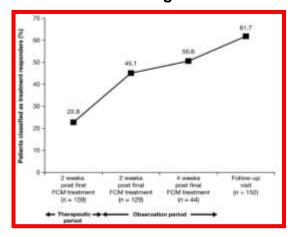
15

- Macromolecular complex of polynuclear iron(III)oxohydroxide stabilised by a carboxymaltose ligand
- Molecular weight of approximately 150 kDa
 - ensuring minimal renal elimination

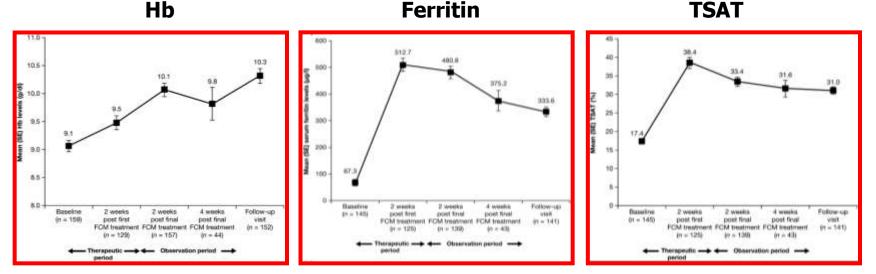
Geisser P. Port J Nephrol Hypert 2009; 23:1 11–16 Ferric carboxymaltose, SmPCs, EU

Characteristics of ferric carboxymaltose (Ferinject[®])

Effective correction of iron deficiency

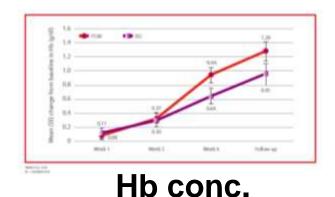

- High single doses (up to 1000 mg iron*)
- Rapid administration
 - 200 mg iron bolus push
 - 1000 mg iron infusion in 15 min
- Selective delivery to bone marrow

Low immunogenic potential

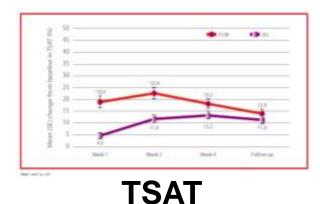

- Free of dextran derivatives
- No cross-reaction with dextran antibodies
- No test dose required

With FCM Hb and iron parameters in HD Responders = Proportion of patients attaining an (Covic et al., 2010)

increase in Hb ≥1.0 g/dl

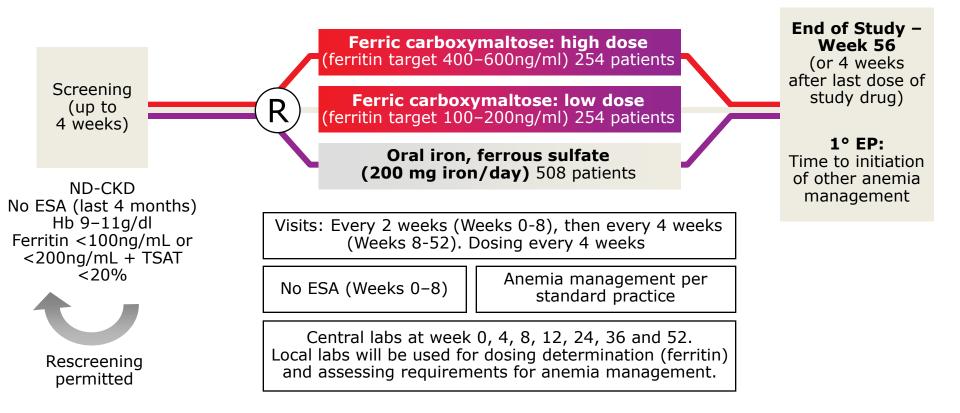

- FCM 100-200 mg at each HD session for a max. 6 weeks.
- n=163
- 120 patients -> ESA
- 63 patients -> no ESA

Covic A et al. Nephrol Dial Transplant 2010 25: 2722–2730


FCM in HD patients – Hb level

200 mg of iron 2-3 times a week according to requirements, FCM (n = 119) vs. IS (n = 118)

Serum ferritin conc.


Evenepoel A et al. Abstract/Poster ASN 2009 San Diego

FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia

Iain C. Macdougall¹, Andreas H. Bock², Fernando Carrera³, Kai-Uwe Eckardt⁴, Carlo Gaillard⁵, David Van Wyck⁶, Bernard Roubert⁷, Jacqueline G. Nolen⁷ and Simon D. Roger⁸ on behalf of the FIND-CKD Study Investigators[†]

NDT Advance Access published June 2, 2014


FIND-CKD: Study design

 Primary endpoint: Time to initiation of other anemia management (e.g. ESA or blood transfusion) Macdougall IC et al. J Am Soc Nephrol

2009; 20: 660A (SA-PO2402)

Results – primary endpoint

- 1. The increase in the Hb level significantly greater with high sF FCM versus oral iron.
- The hematological response <u>faster</u>, and the proportion of patients with an increase in Hb level ≥ 1 g/dL significantly greater with high sF FCM versus oral iron or low sF FCM.

Results – secondary endpoint

Table 2. Secondary efficacy endpoints

	High ferritin FCM (n=153)	Low ferritin FCM (n=152)	Oral iron (n=308)
Blood transfusion, n (%)	12 (7.8)	11 (7.2)	26 (8.4)
Hb increase ≥1 g/dL, n (%)	87 (56.9)*	52 (34.2)	99 (32.1)
Change from baseline to mo	nth 12 (least squares me	ean [SE])	
Hb, g/dLª	1.4 (0.1)**	0.9 (0.1)	1.0 (0.1)
Ferritin, µg/L ^b	451 (10)***	81 (11)***	137 (8)
TSAT, % ^b	15.8 (1.3)	8.5 (1.3)+	13.8 (1.0)
eGFR, mL/min/1·73m ^{2c}	0.4 (0.8)	-1.6 (0.8)	-1.1 (0.6)

* Prior to first initiation of other anemia management

^a Measured up to the point at which other anemia therapy was initiated and/or study drug was discontinued ^c MDRD formula

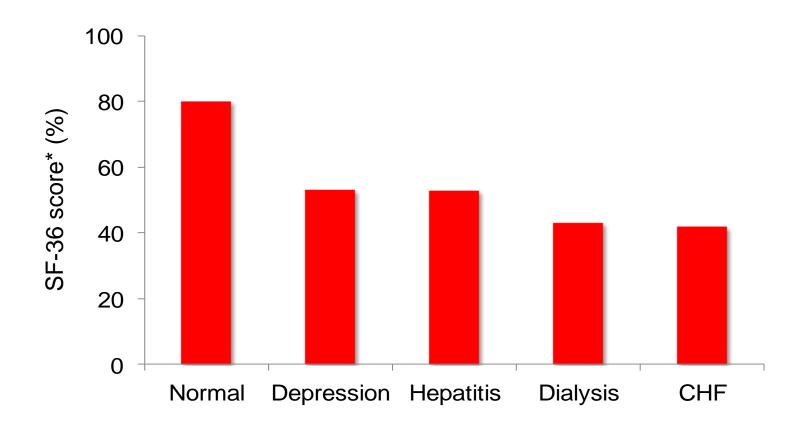
* p<0.001 versus low ferritin FCM and oral iron (Kaplan-Meier estimates, log rank test)

** p=0.014 versus oral iron

*** p<0.001 versus oral iron

⁺p=0.001 versus oral iron

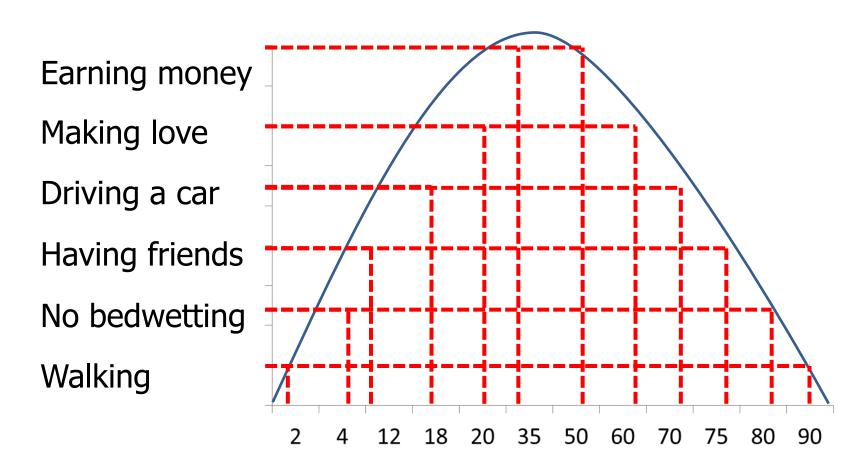
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency

Stefan D. Anker, M.D., Ph.D., Josep Comin Colet, M.D., Gerasimos Filippatos, M.D., Ronnie Willenheimer, M.D., Kenneth Dickstein, M.D., Ph.D., Helmut Drexler, M.D.,* Thomas F. Lüscher, M.D., Boris Bart, M.D., Waldemar Banasiak, M.D., Ph.D., Joanna Niegowska, M.D., Bridget-Anne Kirwan, Ph.D., Claudio Mori, M.D., Barbara von Eisenhart Rothe, M.D., Stuart J. Pocock, Ph.D., Philip A. Poole-Wilson, M.D.,* and Piotr Ponikowski, M.D., Ph.D., for the FAIR-HF Trial Investigators;

NEJM 2009


Quality of life in HF patients

* General health perceptions

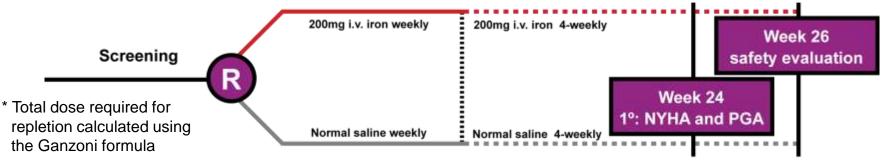
^{1.} Ekman I, et al. Heart Lung 2002;31:94–101; 2. Lesman-Leegte I, et al. J Card Fail 2009;15:17–23; 3. Stewart AL, et al. J Clin Epidemiol 1994;47:719–30; 4. Juenger J, et al. Heart 2002;87:235–41.

Preferences

FAIR-HF study design

Main inclusion criteria:

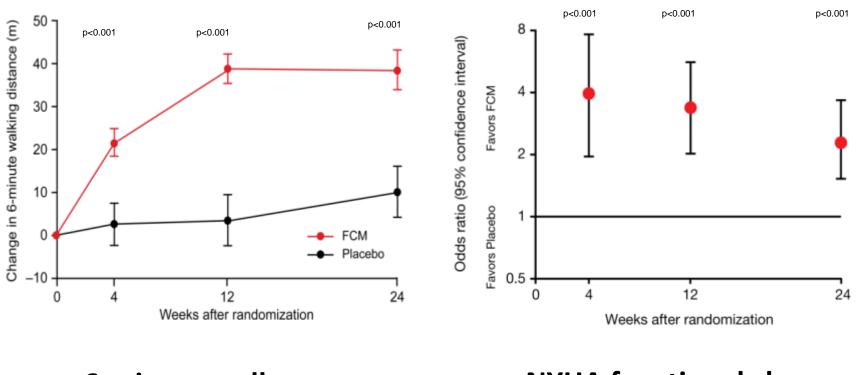
- NYHA class II/III, LVEF ≤40% (NYHA II) or ≤45% (NYHA III)
- Hb: 9.5–13.5 g/dL
- Iron deficiency: serum ferritin <100 μg/L or <300 μg/L, if TSAT <20%</p>
- Treatment adjustment algorithm:
 - Interruption: Hb >16 g/dL or serum ferritin >800 μ g/L or serum ferritin >500 μ g/L, if TSAT >50%
 - Restart: Hb <16 g/dL and serum ferritin <400 µg/L and TSAT<45%


• Blinding:

- Clinical staff: unblinded and blinded personnel
- Patients: usage of curtains and black syringes for injections

Correction phase*

Maintenance phase


Ferric carboxymaltose, n=304

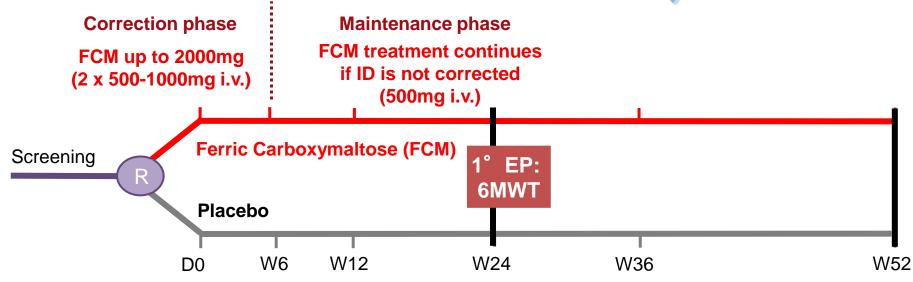
Placebo, n=155

FAIR-HF

FAIR-HF results

6-minute walk test

NYHA functional class

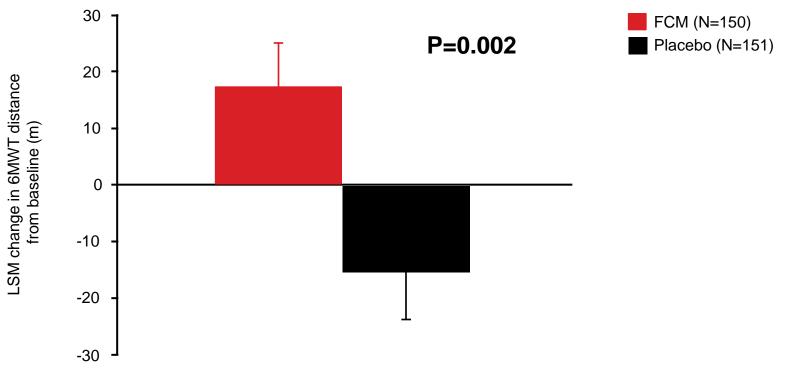

Anker SD, et al. N Engl J Med 2009;361:2436–48.

CONFIRM-HF Study design

- **Design:** Multicentre, randomised (1:1), double-blind, placebo-controlled
- Main inclusion criteria:
 - NYHA class II / III, LVEF ≤45%
 - BNP > 100 pg/mL or NT-proBNP > 400 pg/mL
 - Iron deficiency: serum ferritin <100 ng/mL or 100-300 ng/mL if TSAT <20%
 - Hb < 15 g/dL

• Blinding:

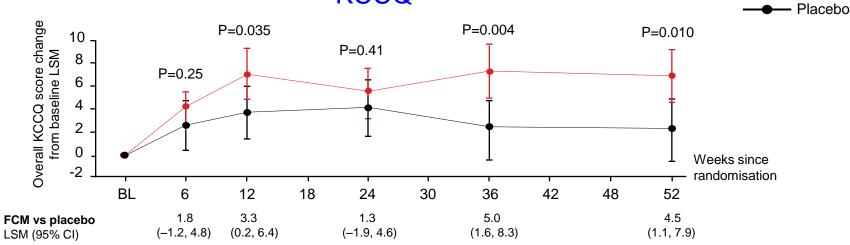
- Clinical staff: unblinded and blinded personnel
- Patients: usage of curtains and black syringes for injections


Ponikowski P et al. Eur Heart J 2014

Primary endpoint: Change in 6MWT at Week 24



FCM improved 6MWT at week 24


FCM vs placebo: 33 ± 11 m (least squares mean \pm SE)

Secondary endpoints: Changes in 6MWT distance and QoL over time 6MWT

KCCQ

Ponikowski P et al. Eur Heart J 2014

- FCM

FCM

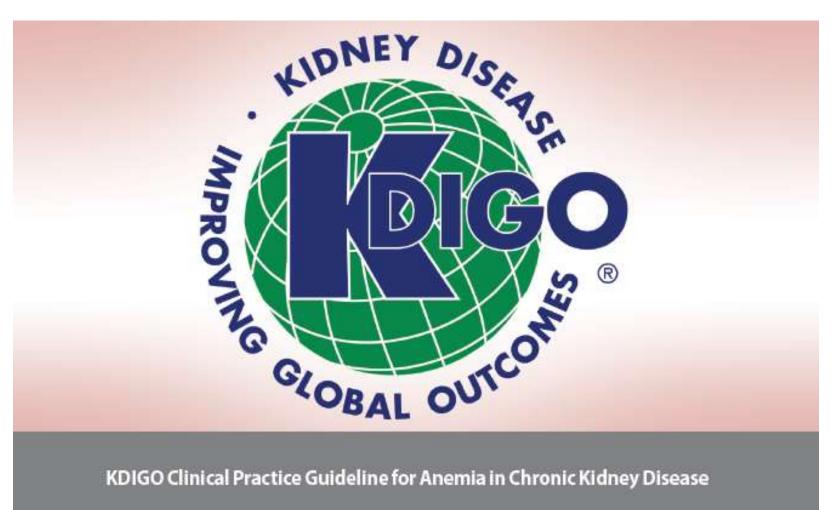
Secondary endpoints: Outcome events

	FCM (N=150)			lacebo N=151)		
End-point or event	Total events (n)	Incidence/ (100 patient risk-year)	Total events (n)	Incidence/ (100 patient risk-year	Time to first event Hazard ratio 95% CI	P- value
Death	12	12 (8.9)	14	14 (9.9)	0.89 (0.41 – 1.93)	0.77
Death for any CV reason	11	11 (8.1)	12	12 (8.5)	0.96 (0.42 – 2.16)	0.91
Hospitalisation	46	32 (26.3)	69	44 (37.0)	0.71 (0.45 – 1.12)	0.14
Hospitalisation for any CV reason	26	21 (16.6)	51	33 (26.3)	0.63 (0.37 – 1.09)	0.097
Hospitalisation due to worsening HF	10	10 (7.6)	32	25 (19.4)	0.39 (0.19 – 0.82)	0.009

FCM reduced the risk of recurrent hospitalisations due to worsening HF (post hoc): Hazard Ratio (95% CI) – 0.30 (0.14-0.64), p=0.0019

Ponikowski P et al. Eur Heart J 2014;

Controversies on Iron Management in CKD Conference March 27-30, 2014, San Francisco Steering Committee


Glenn Chertow, USA – Conference Co-Chair Iain Macdougall, UK – Conference Co-Chair

Iron Overload		Inflammation & Oxidative Stress		Iron & Infection		Hypersensitivity Reactions to IV Iron				
Co-Chairs:										
Eckardt (DE)	Kai-Uwe	Wanner (DE)	Christoph	Weiss (AT)	Günter	Bircher (CH)	Andreas			
Swinkels (NL)	Dorine W.	Stenvinkel (SE)	Peter	Obrador (MX)	Greg	Pollock (AU)	Carol			
	19 	10	Group	members:	12	2	10.			
Adamson (US)	John	Bárány (SE)	Peter	Akizawa (JP)	Tadao	Auerbach (US)	Michael			
Anker (DE)	Stefan	Gaillard (NL)	Carlo	Collins (US)	Alan	Bhandari (UK)	Sunil			
Besarab (US)	Anatole	Goldsmith (UK)	David	de Francisco (SP)	Angel	Cabantchik (IL)	loav			
Coyne (US)	Dan	Jankowska (PL)	Ewa	McMahon (AU)	Lawrence	Castells (US)	Mariana			
Fishbane (US)	Steve	Locatelli (IT)	Francesco	Mikhail (UK)	Ashraf	Demoly (FR)	Pascal			
Ganz (US)	Tomas	Malyszko (PL)	Jolanta	Nemeth (US)	Elizabeta	Kalra (UK)	Philip			
Hershko (IL)	Chiam	Slotki (IL)	Itzchak (lan)	Parfrey (CA)	Patrick	Levin (CA)	Adeera			
Kalantar-Zadeh (US)	Kam	Toblli (AR)	Jorge	Pecoits-Filho (BR)	Roberto	Ring (DE)	Johannes			
Roger (AU)	Simon	Vaziri (US)	Nick	Tentori (US)	Francesca	Rottembourg (FR)	Jacques			
Rostoker (FR)	Guy	Wheeler (UK)	David	Wiecek (PL)	Andrzej	Spinowitz (US)	Bruce			
Singh (US)	Ajay			Winkelmayer (US)	Wolfgang C.					

Controversies on Iron Management in CKD – **Conclusions**

- While there are <u>potential risks</u> associated with iron therapy, <u>appropriate use</u> of iron to treat iron deficiency <u>can help</u> <u>minimise</u> these risks and <u>result in benefits</u> for patients.
- 2. The **benefits** of iron therapy outweigh the risks.
- 3. Preliminary consensus from the controversies conference suggests there is **not sufficient new information** that requires updating the current *KDIGO anemia management guideline*.
- 4. The conference reinforced the importance of clinicians using the **guidelines** in clinical practice. **KDIGO guidelines still valid.**

KDIGO Anemia Guideline

KDIGO Anemia Guideline

- 2.1.1 When prescribing iron therapy, balance the potential benefits of avoiding or <u>minimizing blood transfusions</u>, ESA therapy, and anemia-related symptoms against the risks of harm in individual patients (e.g., anaphylactoid and other acute reactions, unknown long-term risks). *(Not Graded)*
- 2.1.2 For adult CKD patients with anemia <u>not on iron or ESA</u> therapy we suggest a <u>trial of IV iron</u> (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if *(2C)*:
- 2.1.3 For adult CKD patients <u>on ESA therapy</u> who are not receiving iron supplementation, we suggest <u>a trial of IV iron</u> (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):

Goals:

•an increase in Hb concentration without starting ESA treatment and

•TSAT is \leq 30% and ferritin is \leq 500 ng/ml

Conclusions

1. Can we use IV iron in CKD patients? <u>YES, WE CAN</u>. We even have to.

2. Is oral iron possible to be used?

Yes, it is.

BUT

- in most cases the ID is 1,5 2,0 g;
- absorbtion of 1-2 mg/day;

Compliance?

3. Is every iron the same?

No, there is a individualization needed.

4. Iron deficiency is not only Iron deficiency anemia !!!

Спасибо Большое