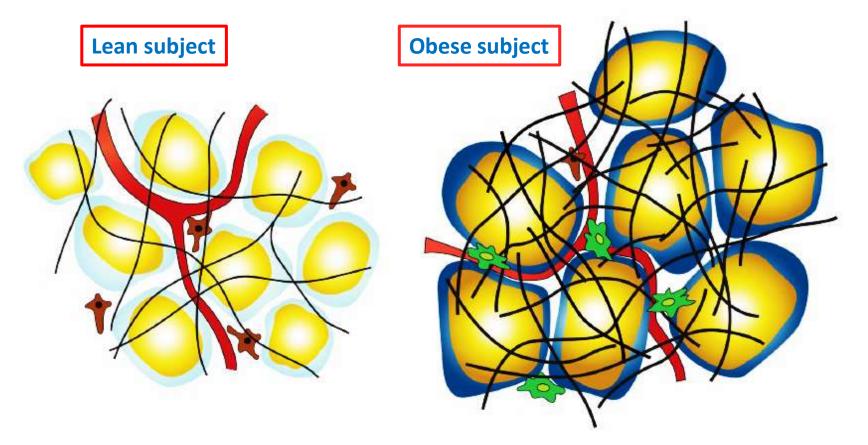


Adipokines as CV risk-factors in CKD

Prof. Andrzej Wiecek

Department of Nephrology, Transplantation and Internal Medicine Medical University of Silesia, Katowice, Poland **e-mail: awiecek@sum.edu.pl**


I have no relevant financial relationship to disclose

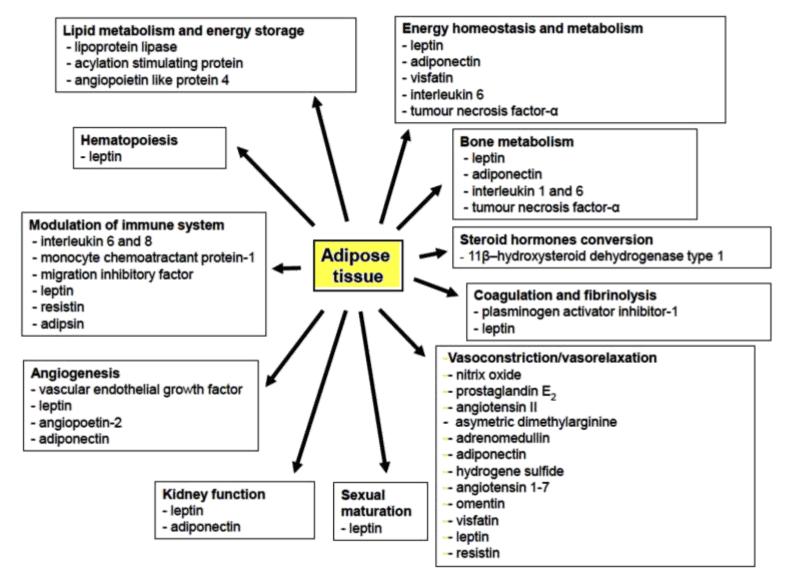
Andrzej Wiecek

White adipose tissue in the lean vs obese state

Adipocytes are shown with yellow triglyceride droplets and blue cytoplasm. In the lean state the light blue cytoplasm represent a state of normoxia, whereas the dark blue in the obese state represents a hypoxic state. Pre adipocytes are shown in brown, macrophages in green, blood vessels/endothelial cells in red, and the extracellular matrix as black.

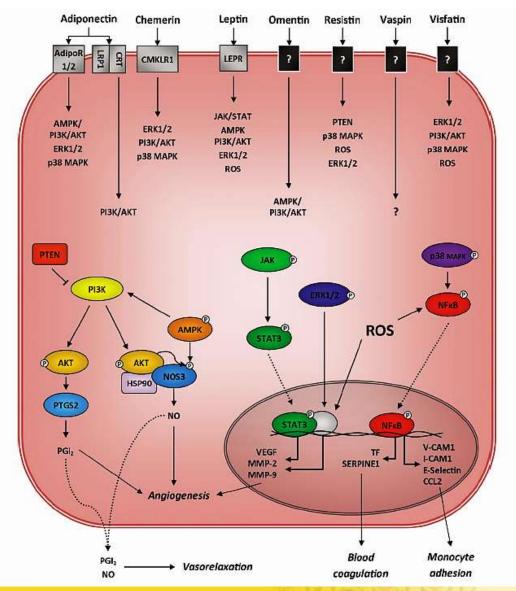
Halberg N. et al. Endocrinol. Metab. Clin. North. Am., 2008; 37: 753

Adipokines (hormones, cytokines, chemokines, growth factors and complement factors) produced by adipose tissue (42)

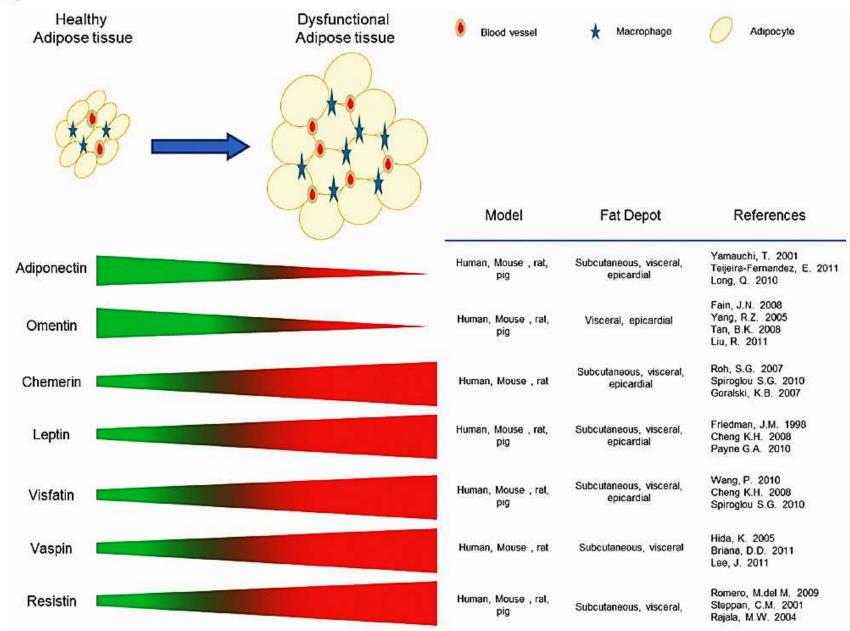

Adiponectin Leptin Visfatin Apelin Resistin Vaspin Agouti protein Acylation stimulating protein (ASP) Omentin Chemerin Zinc- α 2 glycoprotein (ZAG) Retinol binding protein-4 (RBP-4) Autotaksin Lipokain-2 Asymmetric dimetylarginin (ADMA) Nitric oxide (NO) Hydrogen peroxide (H₂O₂) Hydrogen sulfide (H₂S) Atrial natriuretic peptide (ANP) Neuropeptide Y (NPY) Renin Macrophage migration inhibitory factor (MIF) Prostaglandins E₂, F₂ (PGE₂, PGF₂) Endocannabinoids: 2-arachidonoyl glycerol (2-AG), arachidonylethanolamide (anandamide)

Colony stimulating factor-1 (CSF-1) Hepatocyte growth factor (HGF) Vascular endothelial growth factor (VEGF) Nerve growth factor (NGF) Heparin binding epidermal growth factor-like growth factor (HB-EGF) Osteopontin Insulin-like growth factor-1 (IGF-1) Complement factor D (adipsin)b Complement factors B, C, C3, C1q Plasminogen activator inhibitor-1 (PAI-1) TNF-a IL-1*β*, 6, 8, 10 IFN- γ -inducible protein 10 (IP-10) Macrophages and monocyte chemoattractant protein 1 (MCP-1) Adrenomedulin Angiotensinogen Serum amyloid A3 Lipocalin-2

> Adamczak M., Wiecek A., Sem. Nephrol., 2013; 33: 2-13

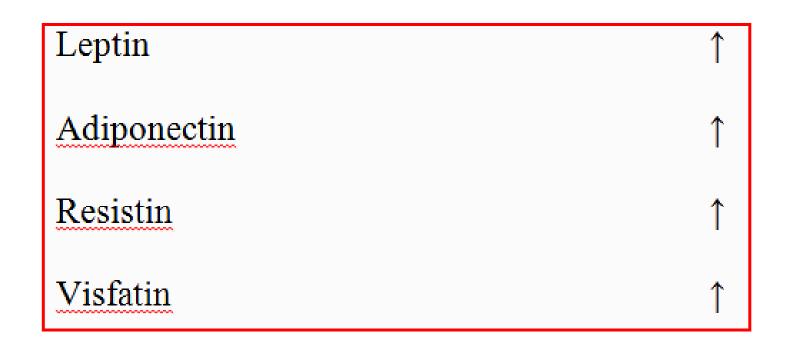

The major physiological functions of adipose tissue secretory products

Adamczak M., Wiecek A., Sem. Nephrol., 2013, 33, 2-13

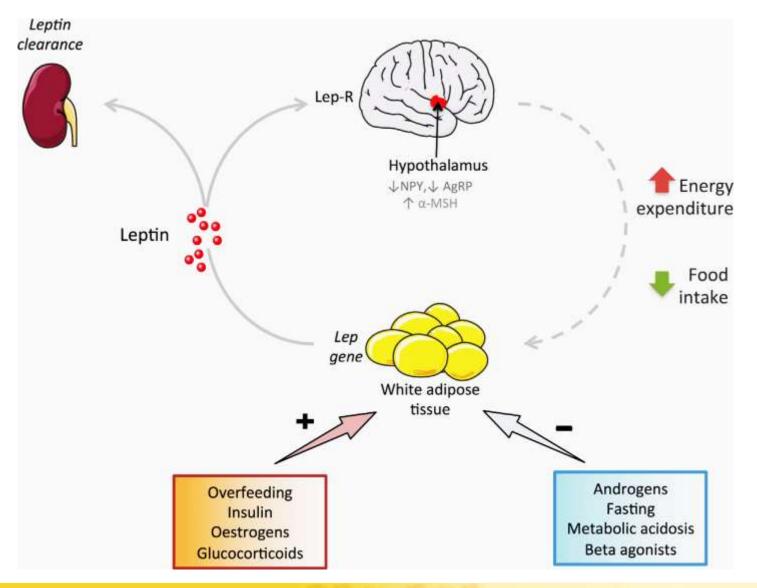


Adipokine signalling mechanisms and their effects on endothelial cell function

Northcott J.M. et al., Can. J. Physiol. Pharmacol., 2012, 90, 1029 - 1059



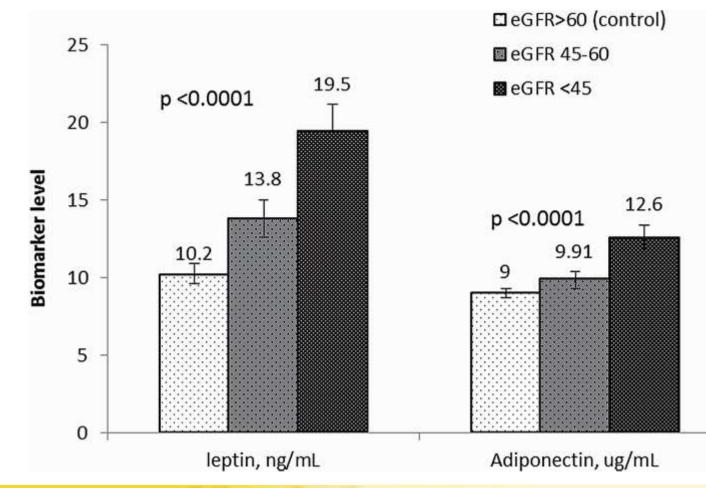
Northcott J.M. et al., Can. J. Physiol. Pharmacol., 2012,90, 1029 - 1059



Abnormalities in the hormones of adipose tissue in chronic kidney disease

Contracting Supersity

Leptin is the afferent signal of a negative feedback loop aimed at maintaining homeostatic control of white adipose tissue mass



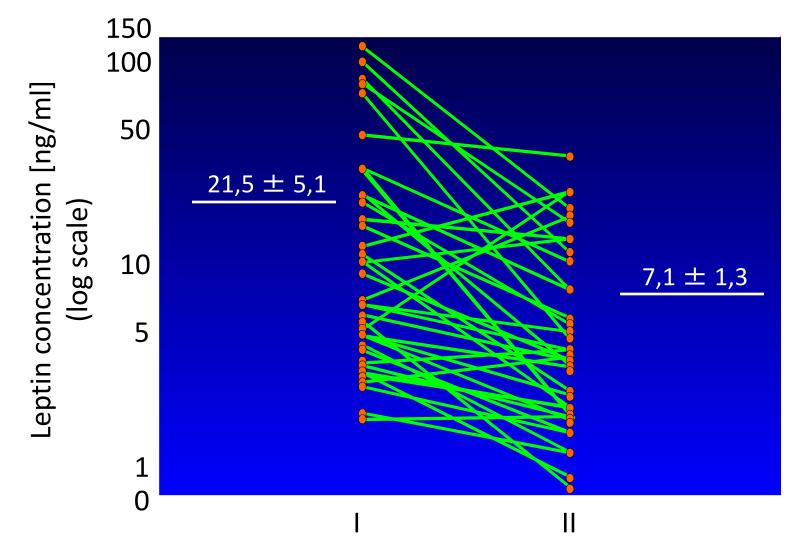
Alix P. M. et al., Biochimie, 2014, Oct, 105C, 12-21

Adjusted mean leptin and adiponectin levels by severity of CKD defined by eGFR levels

Adjusted for age, sex, ethnicity, primary/below education, diabetes, CVD, BMI, systolic BP, current smoking, ever drinker, total and HDL cholesterol

Lim C.C.et al., PLOS ONE | DOI:10.1371/journal.pone.0122009 March 20, 2015

Pathogenesis of hyperleptinaemia in patients with CKD

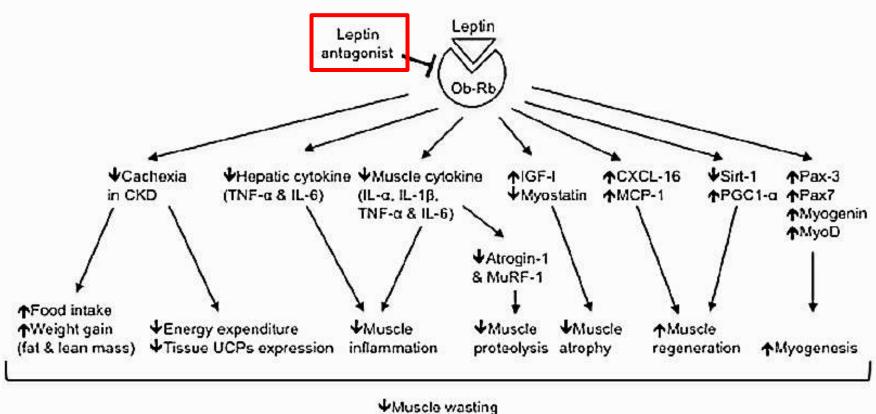

Decreased renal elimination and

biodegradation of leptin

- Hyperinsulinaemia
- Stimulation by cytokines (IL-1; TNF- α)

Plasma leptin levels 2-4 days after transplantation (I) and 1 day before hospital discharge (II)

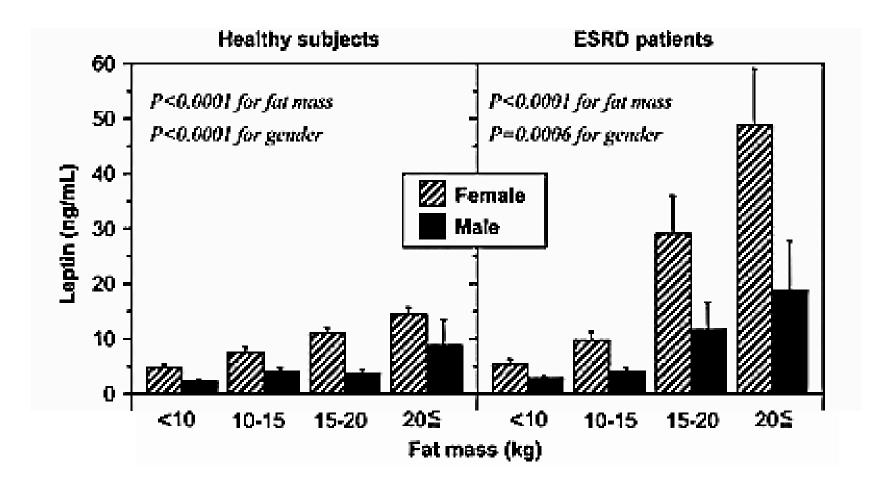
Kokot F., Adamczak M., Więcek A., Nephrol. Dial. Transplant., 1998, 13, 2276



Leptin in patients with CKD

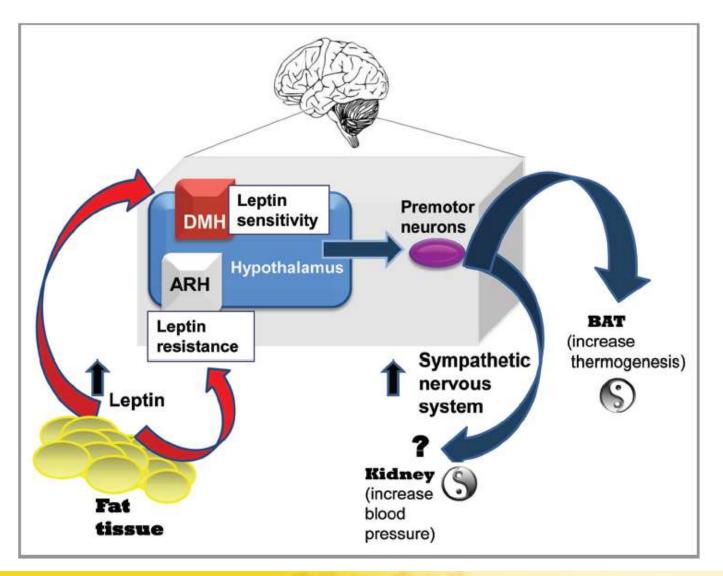
Leptin – a new uraemic toxin? or Leptin – marker of nutrition?

Beneficial effects of pegylated leptin antagonists treatment on food intake, energy expenditure and muscle wasting in CKD mice

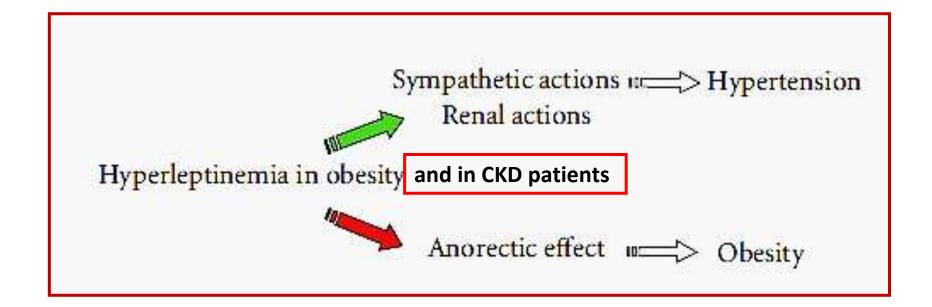


↑Muscle function

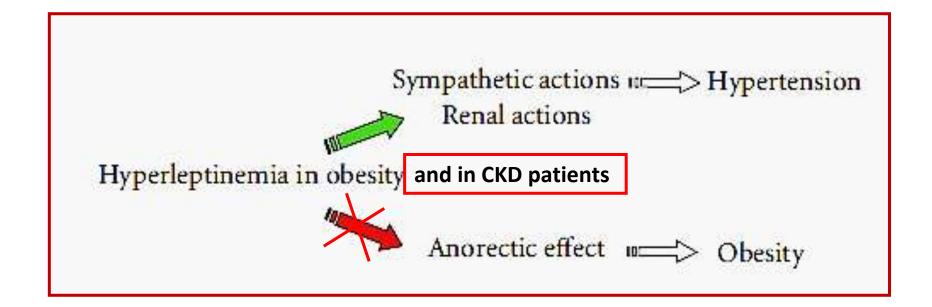
Cheung W.W. et al., J. Am. Soc. Nephrol., 2014, 25, 119–128


Relationship between body fat mass and plasma leptin concentration in healthy subjects and CKD patients

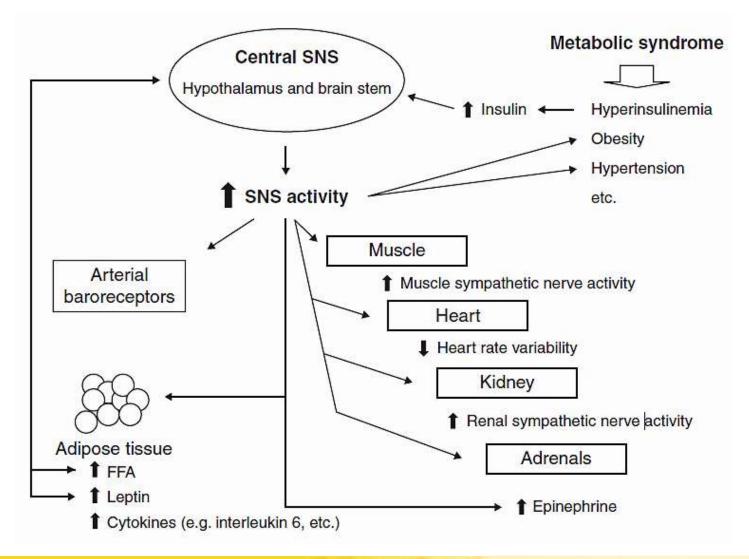
Shoji T. et al.: Metabolism 2005; 54: 330-334


Effects of hyperleptinemia in obese subjects

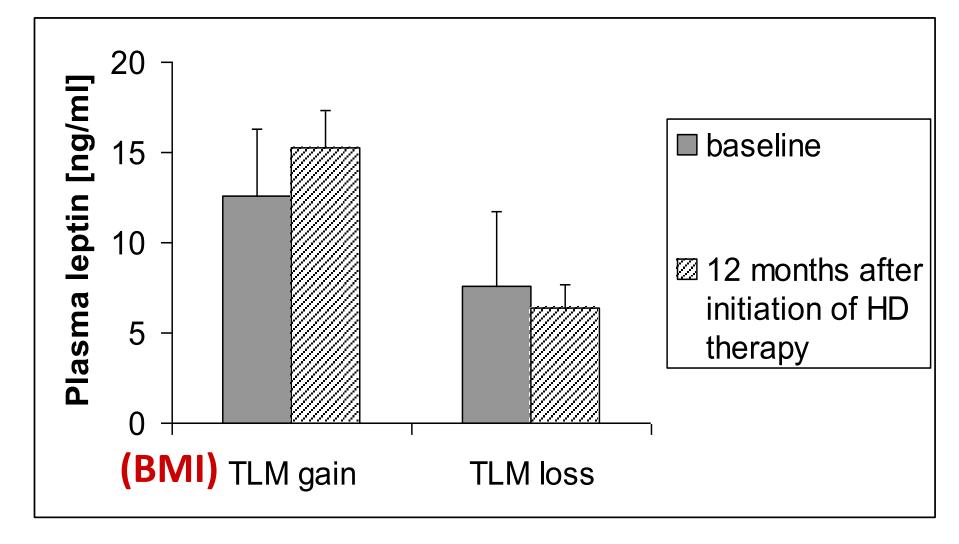
Simonds S. et al., Adipocyte, 2012, 1, 177-181



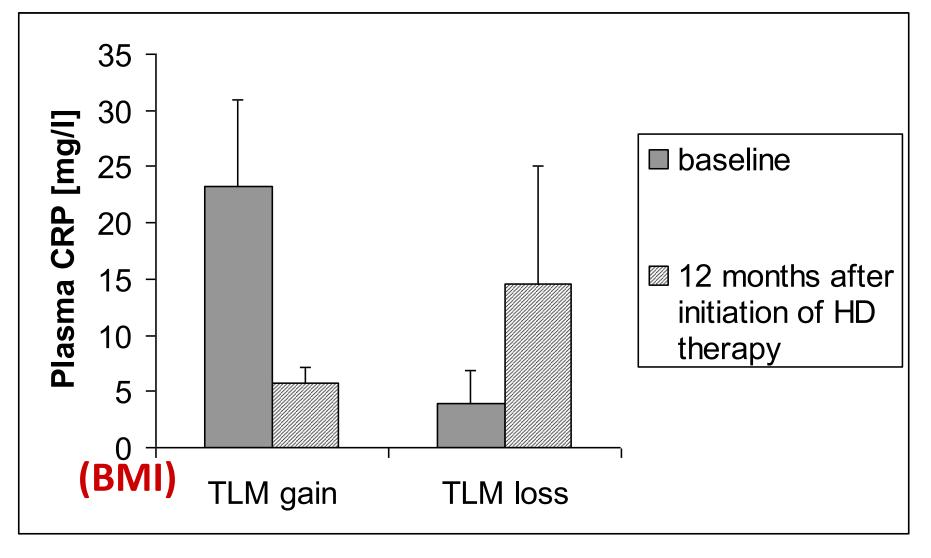
Role of hyperleptinemia in the pathogenesis of hypertension in obesity and in CKD patients



Role of hyperleptinemia in the pathogenesis of hypertension in obesity and in CKD patients


Particular metabolic and other effects of SNS activation in obese subjects and CKD patients

Vaneckova I. et al., J. Endocrinol., 2014, 223, R63–R78


Plasma leptin concentration in patients who gained or lost weight 12 month after initiation of HD therapy

Chudek J. Wiecek A. et al., Med. Sci. Monit., 2003, 9, CR377-CR382

Plasma leptin concentration in patients who gained or lost weight 12 month after initiation of HD therapy

Chudek J. Wiecek A. et al., Med. Sci. Monit., 2003, 9, CR377-CR382

Nephrol Dial Transplant (2005) 20: 2620–2622 doi:10.1093/ndt/gfi192 Advance Access publication 11 October 2005

Translational Nephrology

How does leptin contribute to uraemic cachexia?

Andrzej Więcek

Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice Poland

Leptin is a marker of nutrition:

- **1.** Postive correlation with fat tissue:
- a) low BMI = low serum leptin concentation
- b) caloric suplemenation increases body fat mass and median serum leptin concentration
- 2. Markedly elevated serum leptin concentration does not
- suppress appetite in uraemic patients (leptin resistance). Uraemia is

characterised by relative resistance to many hormones (PTH, HGH, Insulin) and cytokines:

a) Serum leptin increses and serum CRP decreases in those HD patiens who gain weight after 12 months after initiation of HD treatment

Nephrol Dial Transplant (2005) 20: 2620–2622 doi:10.1093/ndt/gfi192 Advance Access publication 11 October 2005

Translational Nephrology

How does leptin contribute to uraemic cachexia?

Andrzej Więcek

Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice Poland

Leptin is a marker of nutrition:

- 1. Postive correlation with fat tissue:
- a) low BMI = low serum leptin concentation
- b) caloric suplemenation increases body fat mass and median serum leptin concentration
- 2. Markedly elevated serum leptin concentration does not
- suppress appetite in uraemic patients (leptin resistance). Uraemia is

characterised by relative resistance to many hormones (PTH, HGH, Insulin) and cytokines:

a) Serum leptin increses and serum CRP decreases in those HD patiens who gain weight after 12 months after initiation of HD treatment

Leptin in CKD patients

Low Serum Leptin Predicts Mortality in Patients with Chronic Kidney Disease Stage 5

Alexandra Scholze, Dirk Rattensperger, Walter Zidek, and Martin Tepel

Abstract

SCHOLZE, ALEXANDRA, DIRK RATTENSPERGER, WALTER ZIDEK, AND MARTIN TEPEL. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. *Obesity*. 2007;15:1617–1622.

Objective: Leptin, secreted from adipose tissue, regulates food intake, energy expenditure, and immune function. It is unknown whether leptin predicts mortality in patients with

centrations were above the median (all-cause mortality, $\chi^2 = 5.05; p = 0.02$).

Discussion: Low serum leptin concentration is an independent predictor of mortality in patients with chronic kidney disease stage 5 on hemodialysis therapy.

Key word: leptin

Scholze A. et al., Obesity, 2007, 15, 1617-1622

Leptin in CKD patients

Low Serum Leptin Predicts Mortality in Patients with Chronic Kidney Disease Stage 5

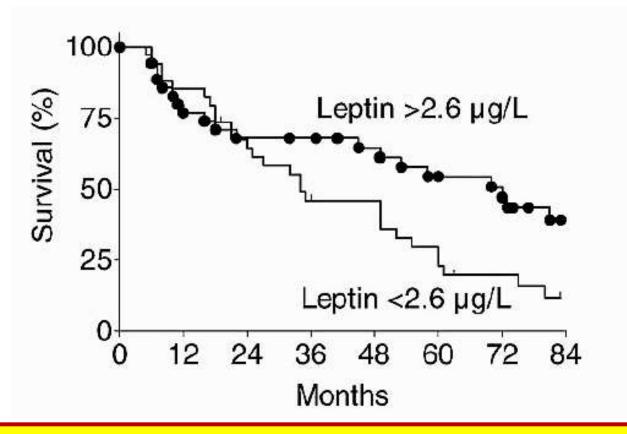
Alexandra Scholze, Dirk Rattensperger, Walter Zidek, and Martin Tepel

Abstract

SCHOLZE, ALEXANDRA, DIRK RATTENSPERGER, WALTER ZIDEK, AND MARTIN TEPEL. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. *Obesity*. 2007;15:1617–1622.

Objective: Leptin, secreted from adipose tissue, regulates food intake, energy expenditure, and immune function. It is unknown whether leptin predicts mortality in patients with

centrations were above the median (all-cause mortality, $v^2 = 5.05$; n = 0.02)


Discussion: Low serum leptin concentration is an independent predictor of mortality in patients with chronic kidney disease stage 5 on hemodialysis therapy.

Key word: leptin

Scholze A. et al., Obesity, 2007, 15, 1617-1622

Kaplan-Meier survival curves for death in 71 patients with CKD stage 5

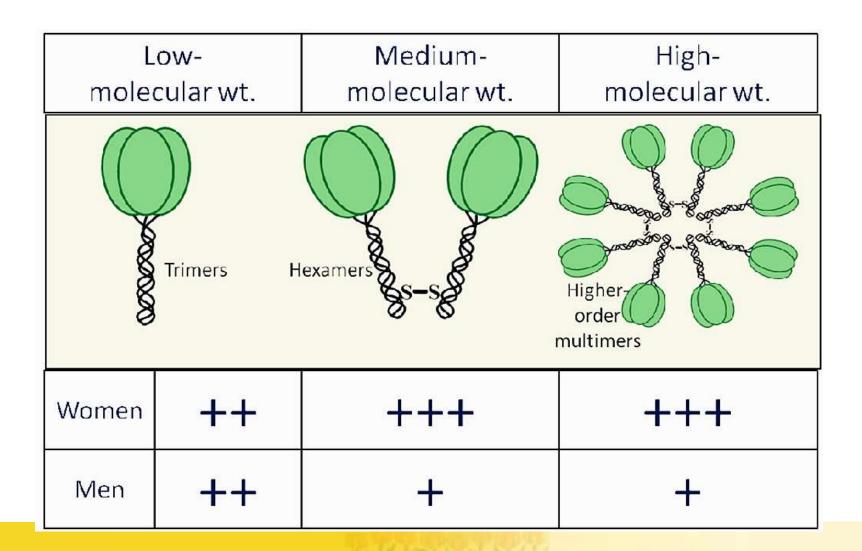
Survival was worse in patients with leptin concentrations below the median (2.6 g/L) than in those with leptin concentrations above the median (2.6 g/L; log rank test, 2 5.05; p <0.02)

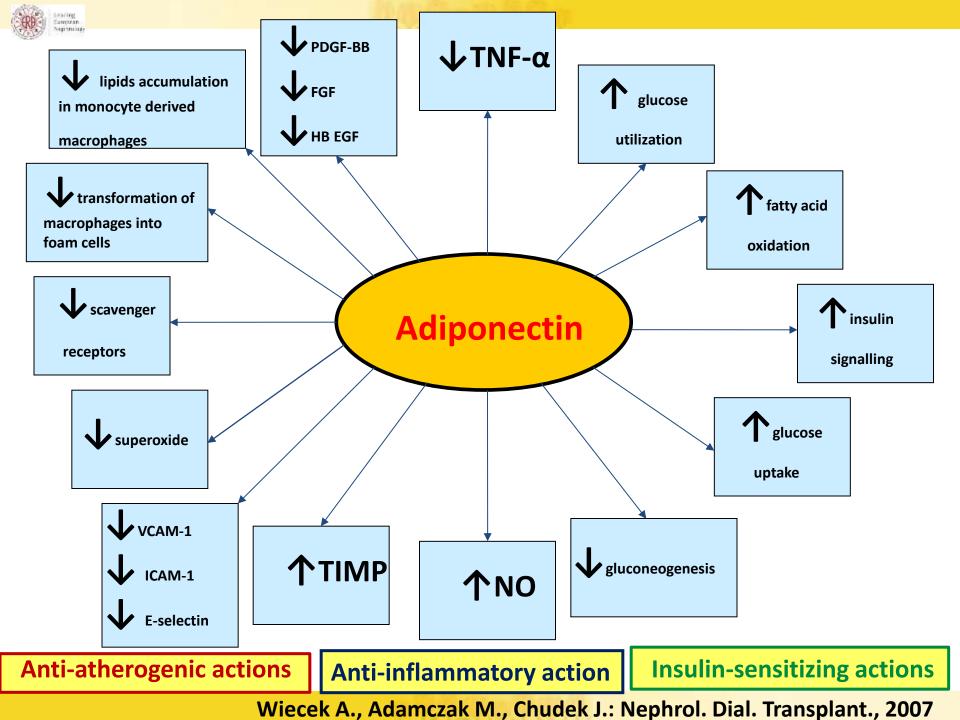
Scholze A. et al., Obesity, 2007, 15, 1617-1622

Leptin in CKD patients

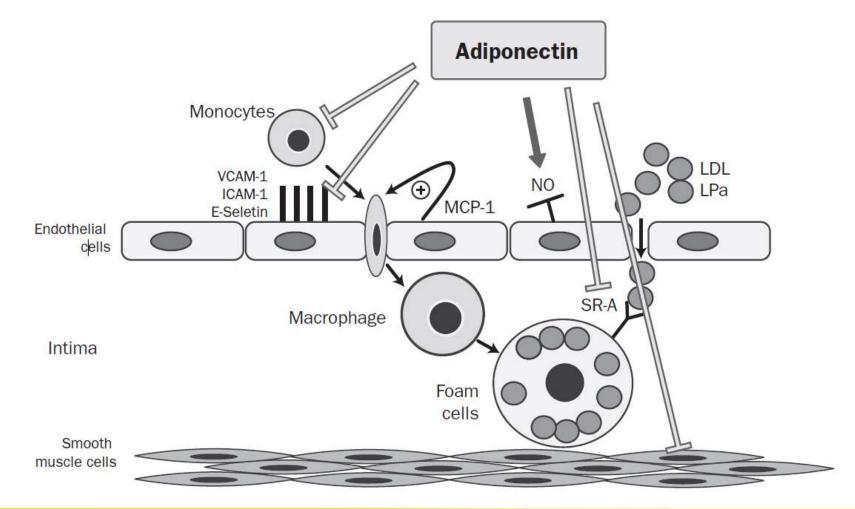
So, Is Leptin Good or Bad in Chronic Kidney Disease?

Kamyar Kalantar-Zadeh

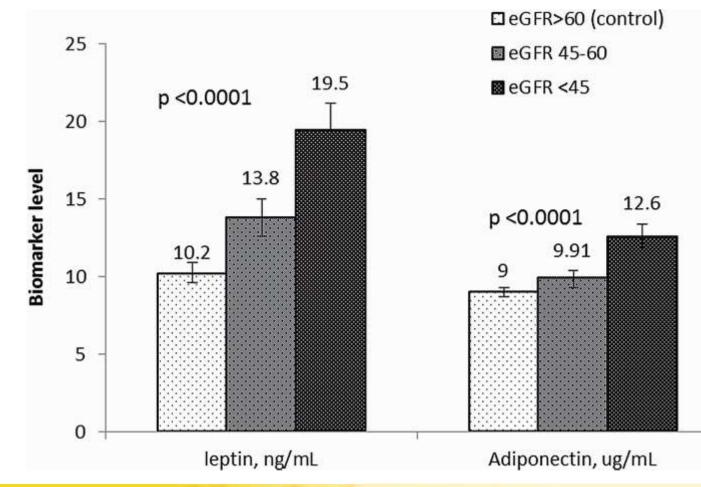

There are, increasing number of studies that suggest a paradoxically inverse association between higher serum leptin and improved markers of nutritional status and outcome in CKD


These counterintuitive constellations, together also known as "reverse epidemiology"

Obesity, 2007, 15, 1343 - 1344

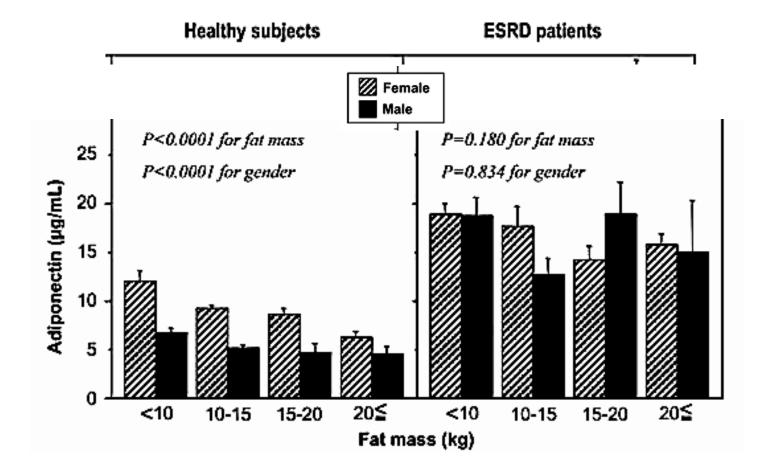

Circulating adiponectin isoforms

Adiponectin inhibits the up-regulation of adhesion molecules, the binding of monocytes to endothelial cells, the transformation of macrophages into foam cells and the proliferation and migration of vascular smooth muscle cells. In addition, the production of nitric oxide from endothelial cells is stimulated by adiponectin



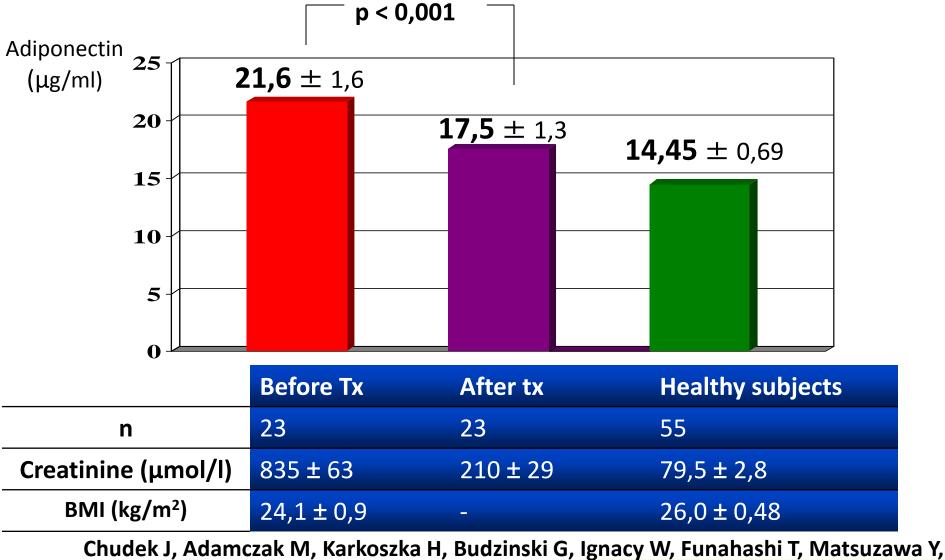
Balsan G.A., et al., Rev. Assoc. Med. Bras., 2015; 61: 72-80

Adjusted mean leptin and adiponectin levels by severity of CKD defined by eGFR levels


Adjusted for age, sex, ethnicity, primary/below education, diabetes, CVD, BMI, systolic BP, current smoking, ever drinker, total and HDL cholesterol

Lim C.C.et al., PLOS ONE | DOI:10.1371/journal.pone.0122009 March 20, 2015

Relationship between body fat mass and plasma adiponectin concentration


ancing ancinan

Shoji T et al.: Metabolism 2005; 54: 330-334

Plasma adiponectin concentration in uraemic patients before and after kidney transplantation

Cierpka L, Kokot F, Wiecek A. Transplant . Proc., 2003; 35:2186-9.

Adiponectin and arteriosclerosis in CKD patients

Original Report: Patient-Oriented, Translational Research

Nephrology

Am J Nephrol 2011;34:249–255 DOI: 10.1159/000330178

Received: April 18, 2011 Accepted: May 31, 2011 Published online: July 26, 2011

Association of Adiponectin with Carotid Arteriosclerosis in Predialysis Chronic Kidney Disease

Mutsuharu Hayashi^{b, c} Rei Shibata^b Hiroshi Takahashi^e Hideki Ishii^b Toru Aoyama^e Hirotake Kasuga^f Shigeki Yamada^f Koji Ohashi^d Syoichi Maruyama^a Seiichi Matsuo^a Noriyuki Ouchi^d Toyoaki Murohara^b Takanobu Toriyama^e

Departments of ^aNephrology and ^bCardiology, ^cCKD Initiatives Internal Medicine and ^dMolecular Cardiology, Nagoya University Graduate School of Medicine, and Departments of ^eCardiology and ^fNephrology, Nagoya Kyoritsu Hospital, Nagoya, Japan

Adiponectin and arteriosclerosis in CKD patients

	Control (n = 81)	CKD (n = 95)	р
Carotid arteriosclerosis	3 (3.7)	21 (22.1)	0.0004
IMT, mm	0.69 ± 0.17	0.81 ± 0.19	0.0010
PS, mm	1.19 ± 2.54	2.53 ± 4.02	0.0072

Carotid arteriosclerosis is defined as IMT >1.2 mm and/or PS >5.0 mm

Hayashi M. et al., Am. J. Nephrol., 2011, 34, 249-255

Adiponectin and arteriosclerosis in CKD patients

	Control (n = 81)	CKD (n = 95)	р
Carotid arteriosclerosis	3 (3.7)	21 (22.1)	0.0004
IMT, mm	0.69 ± 0.17	0.81 ± 0.19	0.0010
PS, mm	1.19 ± 2.54	2.53 ± 4.02	0.0072

>5.0 mm

 Table 5. Incidence of carotid arteriosclerosis according to adiponectin levels in patients with CKD

	High- adiponectin group (n = 50)	Low- adiponectin group (n = 45)	Р
Carotid arteriosclerosis	6 (12.0%)	15 (33. <mark>3</mark> %)	0.012
IMT, mm	0.76 ± 0.14	0.86 ± 0.23	0.015
PS, mm	1.59 ± 2.66	3.35 ± 4.76	0.030

Hayashi M. et al., Am. J. Nephrol., 2011, 34, 249-255

Association of clinical characteristics with carotid arteriosclerosisin CKD patients by logistic regression analysis

	Univariate		Multivariate	
	HR (95% CI)	Р	HR (95% CI)	р
Male	1.95 (0.64-5.90)	0.24		
Age	1.06 (0.99-1.12)	0.061		
BMI	1.10 (0.96-1.26)	0.17	1.01(0.84 - 1.18)	0.90
Hemoglobin A1C	1.67 (1.06-2.63)	0.025	1.60(1.01-2.54)	0.046
Hematocrit	0.98 (0.90-1.08)	0.67		
Albumin	0.43 (0.14-1.28)	0.13		
C-reactive protein	1.29 (0.53-3.14)	0.57		
Smoking	1.26 (0.38-4.27)	0.70	1.49 (0.60-5.30)	0.40
Hypertension	2.88 (0.77-10.73)	0.12	there detroits thereads	
Hyperlipidemia	1.29 (0.46-3.57)	0.62		
eGFR	0.98 (0.95-1.01)	0.15		
Low adiponectin	3.67 (1.28-10.52)	0.015	3.97 (1.20-10.13)	0.023

Multivariate model includes BMI, smoking status and all variables at baseline with p < 0.05 by univariate analysis.

Hayashi M. et al., Am. J. Nephrol., 2011, 34, 249-255

Association of clinical characteristics with carotid arteriosclerosis in CKD patients by logistic regression analysis

	Univariate		Multivariate	
	HR (95% CI)	Р	HR (95% CI)	р
Male	1.95 (0.64-5.90)	0.24		
Age	1.06 (0.99-1.12)	0.061		
BMI	1.10 (0.96-1.26)	0.17	1.01(0.84 - 1.18)	0.90
Hemoglobin A1C	1.67 (1.06-2.63)	0.025	1.60(1.01-2.54)	0.046
Hematocrit	0.98 (0.90-1.08)	0.67		
Albumin	0.43 (0.14-1.28)	0.13		
C-reactive protein	1.29 (0.53-3.14)	0.57		
Smoking	1.26 (0.38-4.27)	0.70	1.49 (0.60-5.30)	0.40
Hypertension	2.88 (0.77-10.73)	0.12		
Hyperlipidemia	1.29 (0.46-3.57)	0.62		
eGFR	0.98 (0.95-1.01)	0.15		
Low adiponectin	3.67 (1.28-10.52)	0.015	3.97 (1.20-10.13)	0.023

Multivariate model includes BMI, smoking status and all variables at baseline with p < 0.05 by univariate analysis.

Hayashi M. et al., Am. J. Nephrol., 2011, 34, 249-255

Adiponectin and atherosclerosis in CKD patients

In conclusion, relatively lower adiponectin levels are associated with an increased risk of atherosclerosis in patients with predialysis CKD. <u>Our findings provide the</u> clinical value of adiponectin as a potential surrogate marker of atherosclerotic status at the early stages of renal dysfunction

 Therapeutic approaches aimed at increasing adiponectin production, such as pharmacological treatment and caloric restriction, could have direct benefits on vascular disorders at the initial stage of CKD

Hayashi M. et al., Am. J. Nephrol., 2011, 34, 249-255

Adiponectin in haemodialysis CKD patients

Original Paper

Nephron Clin Pract 2005;101:c18-c24 DOI: 10.1159/000085707 Received: April 23, 2004 Accepted: February 17, 2005 Published online: May 9, 2005

Reciprocal Association of Plasma Adiponectin and Serum C-Reactive Protein Concentration in Haemodialysis Patients with End-Stage Kidney Disease – A Follow-Up Study

Witold Ignacy^a Jerzy Chudek^a Marcin Adamczak^a Tohru Funahashi^b Yuji Matsuzawa^b Franciszek Kokot^a Andrzej Więcek^a

^aDepartment of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice, Poland, and ^bDepartment of Internal Medicine and Molecular Medicine, Osaka University, Osaka, Japan

Plasma adiponectin and CRP in HD patients

Table 1. Clinical and biochemical characteristics of HD patients and healthy controls (means \pm SEM or medians and 95% CI; for abbreviations see text)

	HD	Control	р
	(n = 80)	(n = 22)	
Age, years	47.0 ± 2.0	44.6 ± 2.0	NS
BMI, kg/m ²	24.0 ± 0.5	24.5 ± 0.9	NS
TFM, kg	15.8 ± 1.0	18.8 ± 1.9	NS
TLM, kg	46.2 ± 1.0	52.4 ± 2.4	0.02
Fat content, %	24.4 ± 1.2	25.5 ± 2.0	NS
IMT, mm	0.77 ± 0.01	0.64 ± 0.01	< 0.001
Serum creatinine, µmol/l	893 ± 4	83 ± 3	< 0.001
Kt/V	1.29 ± 0.04	-	<u></u>
Serum glucose, mmol/l	5.5 ± 0.1	4.7 ± 0.2	< 0.001
Serum total cholesterol,			
mmol/1	5.0 ± 0.1	5.5 ± 0.1	NS
Serum triglycerides,			
mmol/l	1.8 ± 0.1	1.4 ± 0.2	0.01
Plasma adiponectin,			
µg/ml	29.0 ± 2.1	8.7 ± 2.6	< 0.001
Serum CRP, mg/l	10.7 ± 2.8	2.9 ± 1.1	< 0.001
	11.0 (5.4-16.	.6) 2.0 (2.0-4.0	0)
Serum albumin, g/l	38.0 ± 0.5	42.5 ± 0.5	<0.001

Plasma adiponectin and CRP in HD patients

Table 1. Clinical and biochemical characteristics of HD patients and healthy controls (means \pm SEM or medians and 95% CI; for abbreviations see text)

	HD	Control	р
5	(n = 80)	(n = 22)	
Age, years	47.0 ± 2.0	44.6 ± 2.0	NS
BMI, kg/m ²	24.0 ± 0.5	24.5 ± 0.9	NS
TFM, kg	15.8 ± 1.0	18.8 ± 1.9	NS
TLM, kg	46.2 ± 1.0	52.4 ± 2.4	0.02
Fat content, %	24.4 ± 1.2	25.5 ± 2.0	NS
IMT, mm	0.77 ± 0.01	0.64 ± 0.01	< 0.001
Serum creatinine, µmol/l	893 ± 4	83 ± 3	< 0.001
Kt/V	1.29 ± 0.04	-	- <u></u> -
Serum glucose, mmol/l	5.5 ± 0.1	4.7 ± 0.2	< 0.001
Serum total cholesterol,			
mmol/1	5.0 ± 0.1	5.5 ± 0.1	NS
Serum triglycerides,			
mmol/l	1.8 ± 0.1	1.4 ± 0.2	0.01
Plasma adiponectin,			
µg/ml	29.0 ± 2.1	8.7 ± 2.6	< 0.001
Serum CRP, mg/l	10.7 ± 2.8	2.9 ± 1.1	< 0.001
	11.0 (5.4-16.	.6) 2.0 (2.0-4.0	0)
Serum albumin, g/l	38.0 ± 0.5	42.5 ± 0.5	< 0.001

Plasma adiponectin and CRP in HD patients

Table 1. Clinical and biochemical characteristics of HD patients and healthy controls (means \pm SEM or medians and 95% CI; for abbreviations see text)

	HD (n = 80)	Control $(n = 22)$	р
Age, years	47.0±2.0	44.6 ± 2.0	NS
BMI, kg/m ²	24.0 ± 0.5	24.5 ± 0.9	NS
TFM, kg	15.8 ± 1.0	18.8 ± 1.9	NS
TLM, kg	46.2 ± 1.0	52.4 ± 2.4	0.02
Fat content, %	24.4 ± 1.2	25.5 ± 2.0	NS
IMT, mm	0.77 ± 0.01	0.64 ± 0.01	< 0.001
Serum creatinine, µmol/l	893 ± 4	83 ± 3	< 0.001
Kt/V	1.29 ± 0.04	-	-
Serum glucose, mmol/l	5.5 ± 0.1	4.7 ± 0.2	< 0.001
Serum total cholesterol, mmol/l	5.0 ± 0.1	5.5 ± 0.1	NS
Serum triglycerides,			
mmol/l	1.8 ± 0.1	1.4 ± 0.2	0.01
Plasma adiponectin,			
µg/ml	29.0 ± 2.1	8.7 ± 2.6	< 0.001
Serum CRP, mg/l	10.7 ± 2.8	2.9 ± 1.1	< 0.001
	11.0 (5.4–16.	.6) 2.0 (2.0-4.0	0)
Serum albumin, g/l	38.0 ± 0.5	42.5 ± 0.5	< 0.001

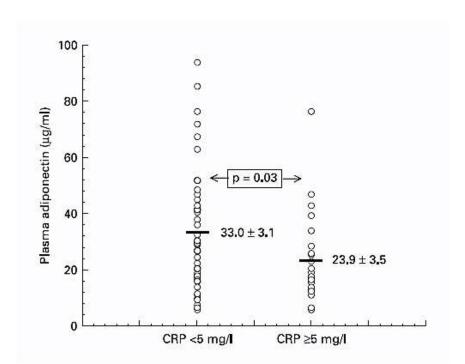
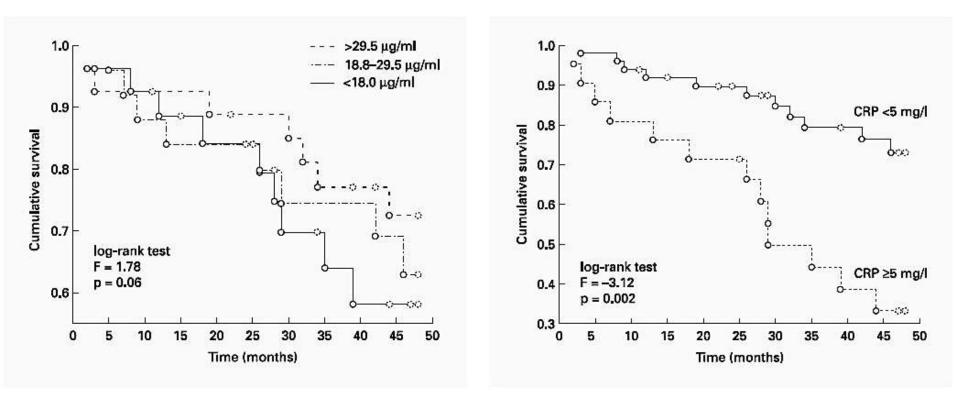


Fig. 1. Plasma adiponectin concentration in HD patients with serum CRP concentrations ≥ 5 and <5 mg/l.

Ignacy W. et al., Nephron Clin. Pract., 2005, 101, c18 – c24

Survey Survey

Plasma adiponectin or CRP and survival in HD patients



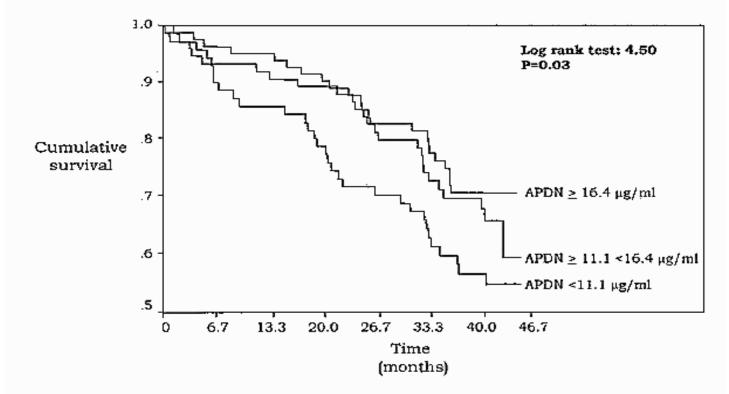

Fig. 2. Kaplan-Meier estimation of survival in HD patients with plasma adiponectin concentration in the highest, middle and the lowest tertile.

Fig. 3. Kaplan-Meier estimation of survival in HD patients with serum CRP concentrations ≥ 5 and <5 mg/l.

Ignacy W. et al., Nephron Clin. Pract., 2005, 101, c18 – c24

Relationship between survival and plasma adiponectin concentration in hemodialysed patients with ESRD

Figure 4. Kaplan-Meier survival curves for cardiovascular events (fatal and nonfatal) in the study cohort. Patients were stratified into three tertiles according to plasma ADPN concentrations (first tertile, ADPN levels of <11.1 μ g/ml; second tertile, >11.1 to <16.4 μ g/ml; third tertile, ≥16.4 μ g/ml).

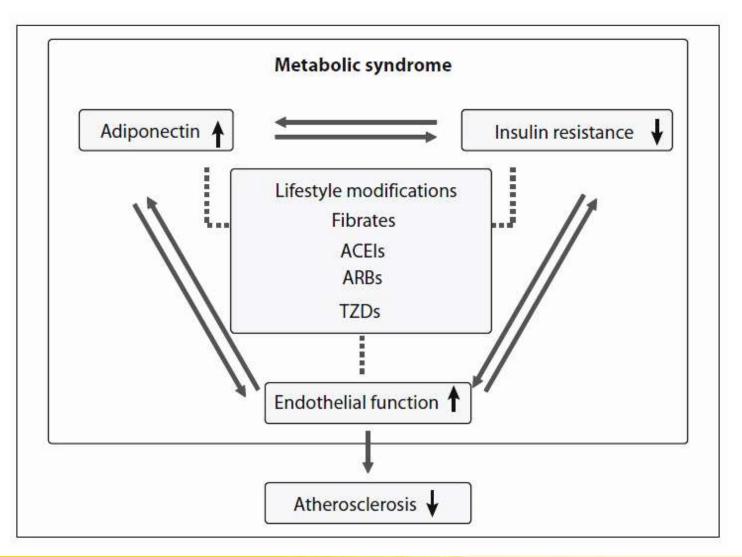
Zoccali C. et al., J. Am. Soc. Nephrol., 2002, 13, 134-141

Adiponectin and CV complications in CKD patients

Therapeutic Apheresis and Dialysis

Therapeutic Apheresis and Dialysis 2014; 18(2):185–192 doi: 10.1111/1744-9987.12065 © 2013 The Authors Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis

Plasma Adiponectin Levels for Prediction of Cardiovascular Risk Among Hemodialysis Patients


Eid M El-Shafey,1 and Mohamed Shalan2

¹Nephrology Unit, Internal Medicine Department, ²Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt

- Plasma ADPN levels were lower (P = 0.000) among patients who experienced new CV events (11.13 +/- 2.15 mg/mL) than among event-free patients (16.82 +/- 2.45 mg/mL), and seem to predict cardiovascular outcomes.
- The inverse relationships between ADPN and several cardiovascular risk factors indicate that ADPN may have a protective role in the prevention of CV events.

Influence of therapeutic interventions on adiponectin, insulin resistance and endothelial function

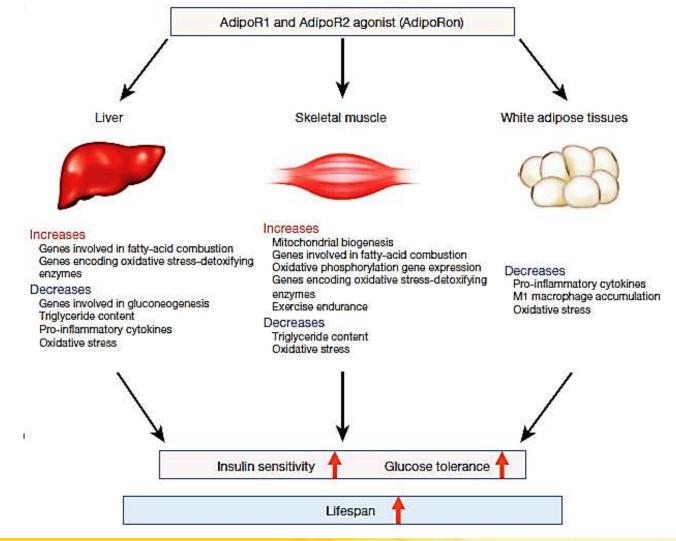
Balsan G.A., et al., Rev. Assoc. Med. Bras., 2015; 61: 72-80

Adiponectin agonist – orally active compound

ARTICLE

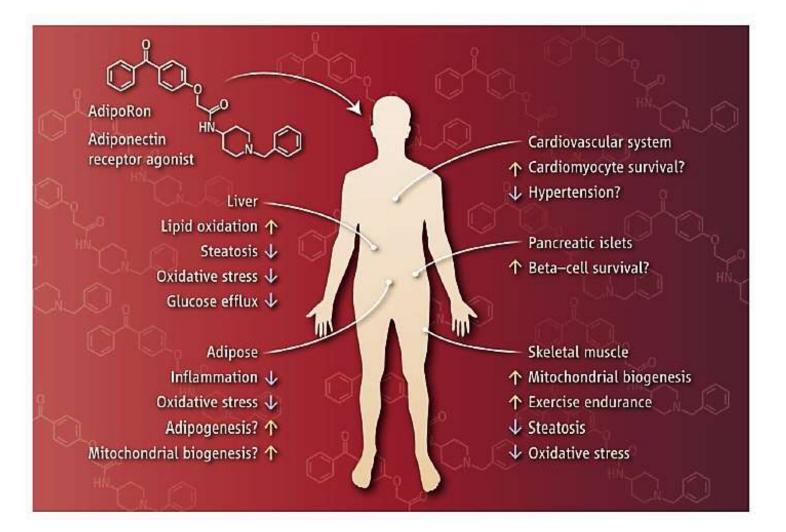
doi:10.1038/nature12656

A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity

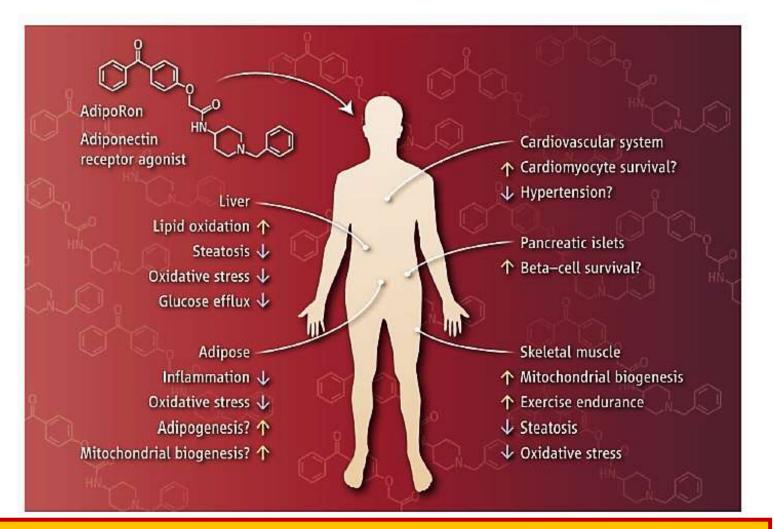

Miki Okada-Iwabu^{1,2,3}*, Toshimasa Yamauchi^{1,2,3}*, Masato Iwabu^{1,2}*, Teruki Honma⁴, Ken-ichi Hamagami¹, Koichi Matsuda¹, Mamiko Yamaguchi¹, Hiroaki Tanabe⁴, Tomomi Kimura-Someya⁴, Mikako Shirouzu⁴, Hitomi Ogata⁵, Kumpei Tokuyama⁵, Kohjiro Ueki¹, Tetsuo Nagano⁶, Akiko Tanaka^{4,6}, Shigeyuki Yokoyama^{4,7} & Takashi Kadowaki^{1,2,3}

Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR- α pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2 *in vitro*. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR- α pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model *db/db* mice, and prolonged the shortened lifespan of *db/db* mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.

Okada-Iwabu M. et al., 2013, Nature, 503, 495-499

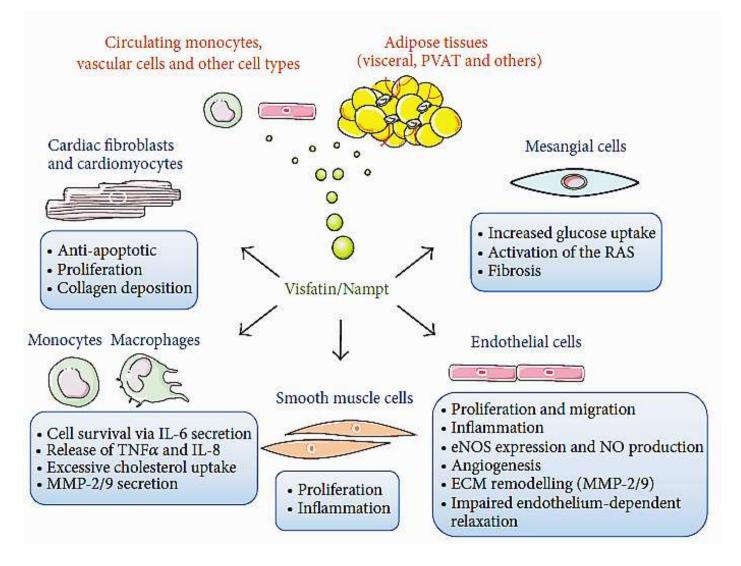

AdipoRon increased insulin sensitivity and glucose tolerance, and at the same time contributed to longevity of obese diabetic mice

Okada-Iwabu M., Nature, 2013, 503, 495-499


Adiponectin mimetic Muscle, heart, pancreas, liver, and adipocytes are key target tissues for adiponectin receptor activation

Holland W. L., Scherer Ph. E., Science, 2013, 342, 1460-1461

Adiponectin mimetic Muscle, heart, pancreas, liver, and adipocytes are key target tissues for adiponectin receptor activation



.....will reduce CV complications in CKD patients???!!!

Holland W. L., Scherer Ph. E., Science, 2013, 342, 1460-1461

The main reported direct actions of visfatin/Nampt in the cardiovascular system

Romacho T. et al., Med. Inflam., 2013, ID 946427

Visfatin in CKD patients with or without atherosclerotic plaque in the carotid artery

Parameters	No plaque	With plaque	
n	118	62	
Age/years	48.1±12.4	55.6±13.7*	
Males/n(%)	62(52.5%)	34(54.8%)	
Smoking/n(%)	12(10.2%)	8(12.9%)	
$BMI/(kg/m^2)$	23.2±2.12	24.3±1.98	
Serum parameters			
Visfatin/(ng/mL)	28.24±6.18	34.22±7.96*	
Insulin/ (µU/mL)	169.3±22.8	145.5±23.4	
HOMA-R index	5.01±1.15	8.23±1.96*	
CRP/(mg/L)	2.1(0.2-27.2)	10.3(0.2-67.2)*	
IL-6/(ng/mL)	3.01±0.34	4.78±0.42*	
Glucose/(mmol/L)	5.01±1.02	5.32±1.19	
Total cholesterol/(mmol/L)	4.82±1.41	5.04±1.31	
Total triglyceride/(mmol/L)	2.06±0.41	1.87±0.56	
HDL cholesterol/(mmol/L)	1.45±0.27	1.41±0.35	
LDL cholesterol/(mmol/L)	2.6±1.0	2.8±0.6	
VLDL cholesterol/(mmol/L)	0.96±0.26	1.02±0.34	
Albumin/(g/dL)	37.1±6.5	35.2±6.0	

Data were expressed as $\overline{x}\pm s$ or median (inter-quartile range), as ppropriate. **P*<0.05 vs patients with no plaque.

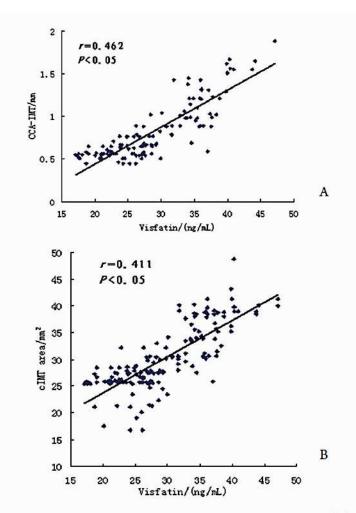


Figure 2 Correlation between Visfatin and CCA-IMT (A) and c IMT area (B).

Tang X et al., J. Cent. South Univ., 2013, 38, 553-559

Visfatin in patients with chronic kidney disease

Nephrol Dial Transplant (2008) 23: 959–965 doi: 10.1093/ndt/gfm727 Advance Access publication 4 November 2007

Original Article

Serum visfatin concentration and endothelial dysfunction in chronic kidney disease

Mahmut Ilker Yilmaz^{1,2}, Mutlu Saglam³, Juan Jesus Carrero², Abdul Rashid Qureshi², Kayser Caglar¹, Tayfun Eyileten¹, Alper Sonmez⁴, Erdinc Cakir⁵, Mujdat Yenicesu¹, Bengt Lindholm², Peter Stenvinkel² and Jonas Axelsson²

¹Departments of Nephrology, Gülhane School of Medicine, 06018 Etlik-Ankara, Turkey, ²Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, K 56 Karolinska University Hospital at Huddinge, Stockholm, Sweden, ³Departments of Radiology, ⁴Departments of Internal Medicine and ⁵Departments of Biochemistry, Gülhane School of Medicine, 06018 Etlik-Ankara, Turkey

Visfatin in patients with chronic kidney disease

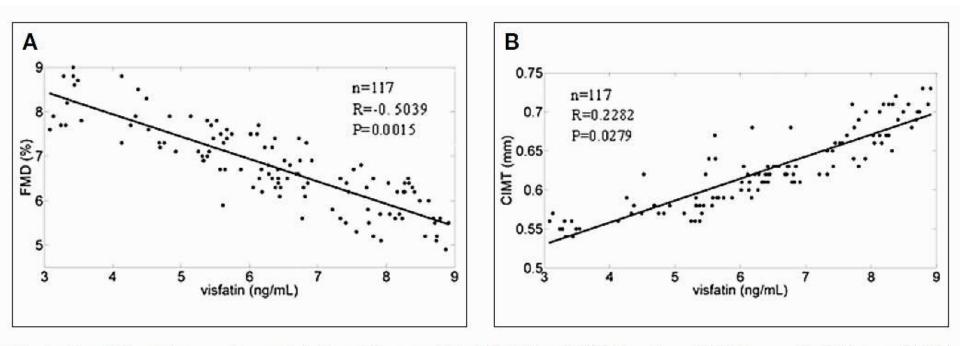
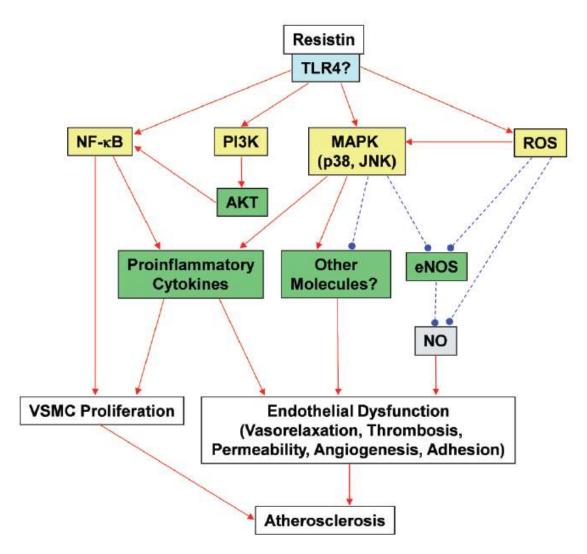



Fig. 2 - Correlation between plasma visfatin and flow-mediated dilatation (FMD) (A) and carotid intima-media thickness (CIMT) (B) in 117 patients with chronic kidney disease.

Mu J., Feng B. et al., J. Nephrol., 2011, 24, 177-184

Potential mechanisms by which resistin may mediate cardiovascular dysfunction

Jamaluddin M.S. et al., Brit. J. Pharmacol., 2012, 165, 622–632

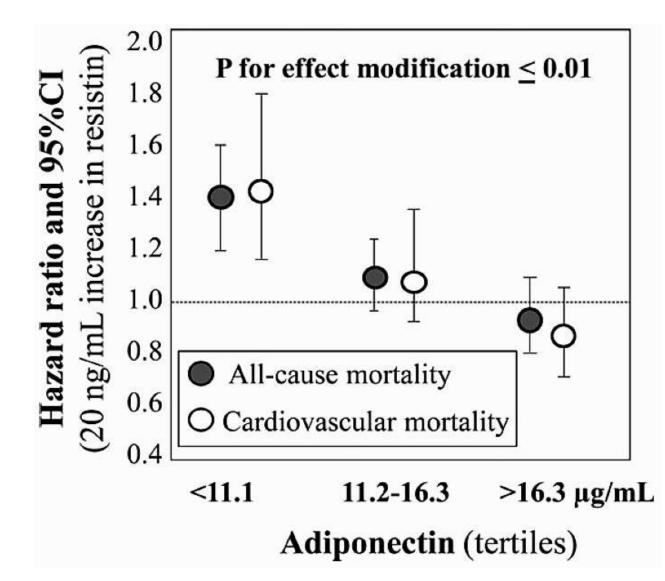
Resistin in patients with chronic kidney disease

PROGRESS IN UREMIC TOXIN RESEARCH =

Resistin as a Cardiovascular and Atherosclerotic Risk Factor and Uremic Toxin

Gerald Cohen and Walter H. Hörl

Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria


ABSTRACT

Resistin is a 12.5 kDa protein originally found to be secreted by mouse adipocytes. Whereas in rodents adipose tissue is the main source of resistin, in humans resistin is expressed primarily in macrophages. In a variety of pathophysiologic states, particularly in type 2 diabetes mellitus and in chronic kidney disease, the serum concentration of resistin is increased. Resistin reduces the glucose uptake in adipose tissue and skeletal muscle cells and may be involved in insulin resistance. A positive correlation between resistin levels and inflammatory markers has been described. Resistin has a potential role in cardiovascular disease and may contribute to an increased atherosclerotic risk by modulating the activity of endothelial cells. We recently found that resistin in concentrations measured in uremia is able to interfere with the chemotactic movement and the oxidative burst of neutrophils, cells of the first-line nonspecific immune defense. Therefore, resistin may also contribute to the disturbed immune response and as a consequence to the increased risk of infections in uremic and diabetic subjects.

Sem. Dial., 2009, 22, 373-377

Effect modification of plasma adiponectin (expressed in tertiles) on the link resistin-mortality

Spoto B. et al., Nephrol. Dial. Transplant., 2013, 28, Suppl. 4, iv181–iv187

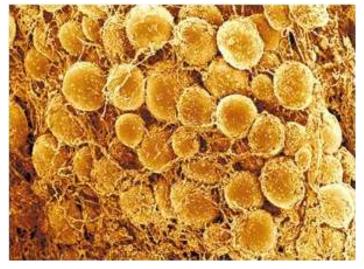
- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- **2.** Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis

- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- 2. Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis

- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- 2. Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis

- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- 2. Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis

- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- 2. Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis



- 1. Fat tissue is a potent endocrine organ which secrets many hormones, cytokines and growth factors (adipokines)
- 2. Adipokines are involved in the pathogenesis of CV complications in CKD patients in different ways:
- a. elevated leptin concentration may be involved in the pathogenesis of HT or anaemia in CKD patients but in anorexia
- b. lower plasma leptin concentration reflects wasting and inflammation and may lead to CV mortality and morbidity
- c. inappropriate low adiponectin (omentin?) plasma concentration may cause endothelium dysfunction, insulin resistance and atherosclerosis
- d. increased plasma resistin and visfatin levels are involved in pathogenesis lipid disorders, endothelial dysfunction and atherosclerosis

Role of Adipokines in CV complications in CKD patients

Therefore:

Adipokines play an important role in CV complications in CKD patients !!!

Thank you very much for your attention!

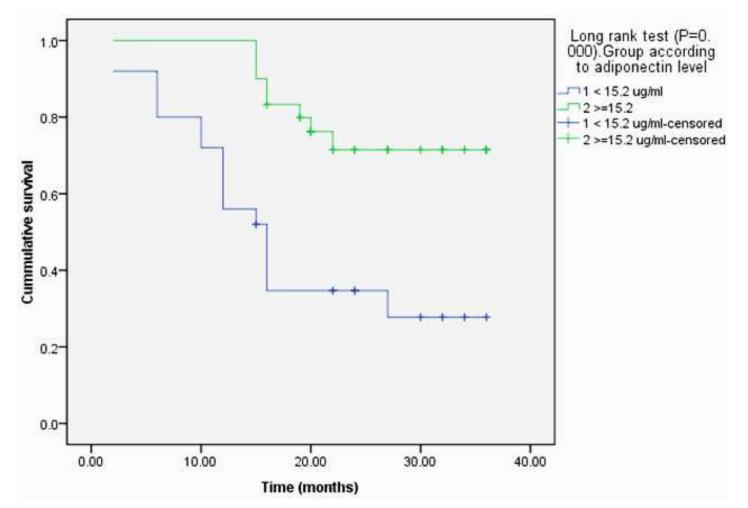
IN IN MARCH.

THE REAL PROPERTY AND ADDRESS OF TAXABLE PARTY AND ADDRESS OF TAXABLE

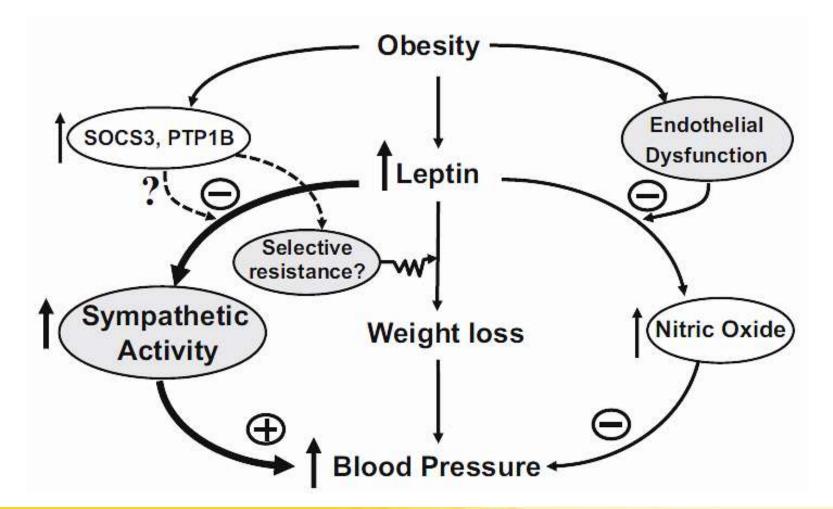
Andrzej Wiecek

Katowice

and the accession of the second



Kaplan–Meier survival curves for analysis of time (months) to cardiovascular events. Patients were divided into two groups according to plasma adiponectin (ADPN) levels


(group 1, ADPN < 15.2 mg/mL; group 2, ADPN >15.2 mg/mL)

El-Shafey E.D., Shalan M., Ther. Apheresis, Dial., 2014; 18(2):185–192

Possible interactions among leptin, sympathetic activity, endothelial dysfunction and nitric oxide synthesis, and negative regulators of leptin signaling in obesity hypertension

Hall J.E. et al., Circ Res., 2015; 116: 991-1006