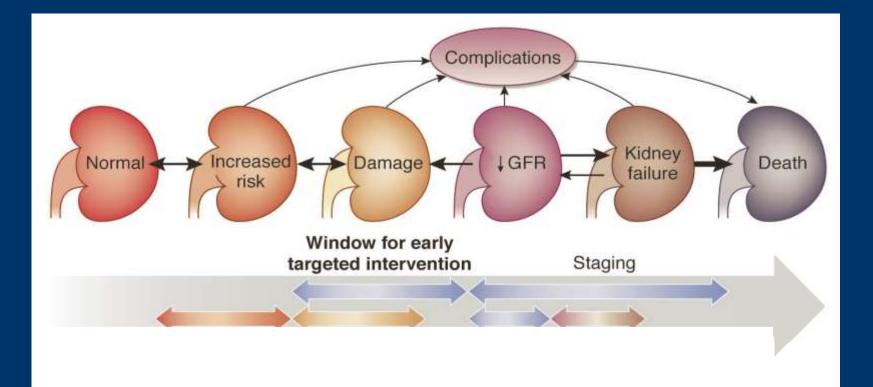


Acute kidney injury – a problem for today and tomorrow

Jorge Cerdá, MD, MS, FACP, FASN Clinical Professor of Medicine Albany Medical College, Albany, NY, USA

Disclosures


- Baxter Travel and presentation fees
- Alere Research support
- Thrassos Research support

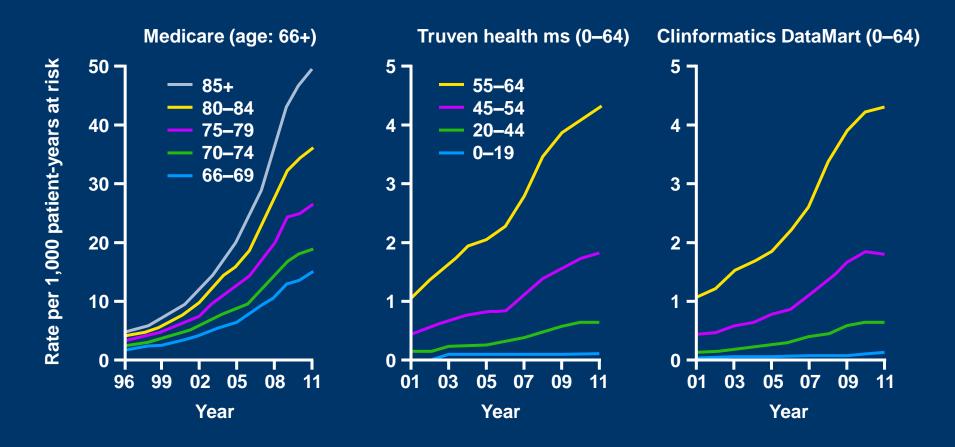
AKI: key points

- AKI requiring renal replacement therapy (AKI-D) is associated with
 - High short-term mortality and morbidity
 - Long-term consequences including CKD and ESRD
- Methodological constraints limit our understanding of the recovery process, and hamper intervention

AKI management may impact recovery

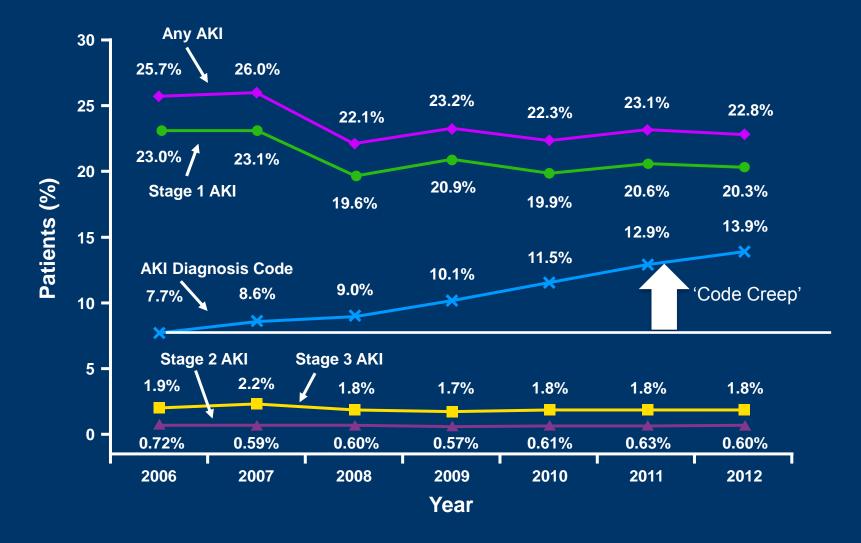
The natural history of AKI

Lewington, Cerda, Mehta, Kidney Int 2013;84:457-67


The consequences of AKI

The incidence of AKI seems to be increasing

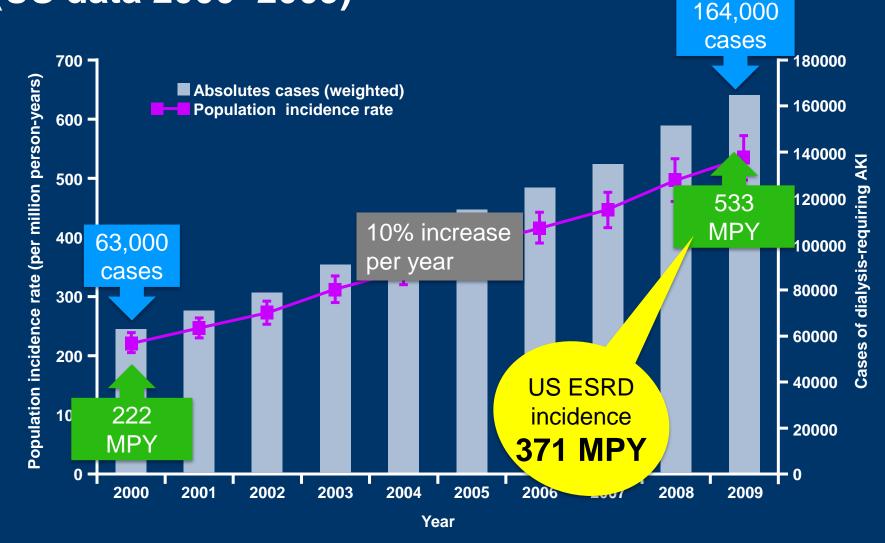
Worldwide, approximately 2,000,000 people will die of AKI this year


Hsu RK, et al. J Am Soc Nephrol 2013;24:37–42; Prescott GJ, et al. Nephrol Dial Transplant 2007;22:2513–9; Cerdá J, et al. Clin J Am Soc Nephrol 2015; Mehta,Cerdá et al. Lancet 2015; Uchino S, et al. JAMA 2005;294:813–8; Hoste EA, et al. Crit Care 2006;10:R73; Ali T, J Am Soc Nephrol 2007;18:1292–8; Cerdá J, et al. Nat Clin Pract Nephrol 2008;4:138–53

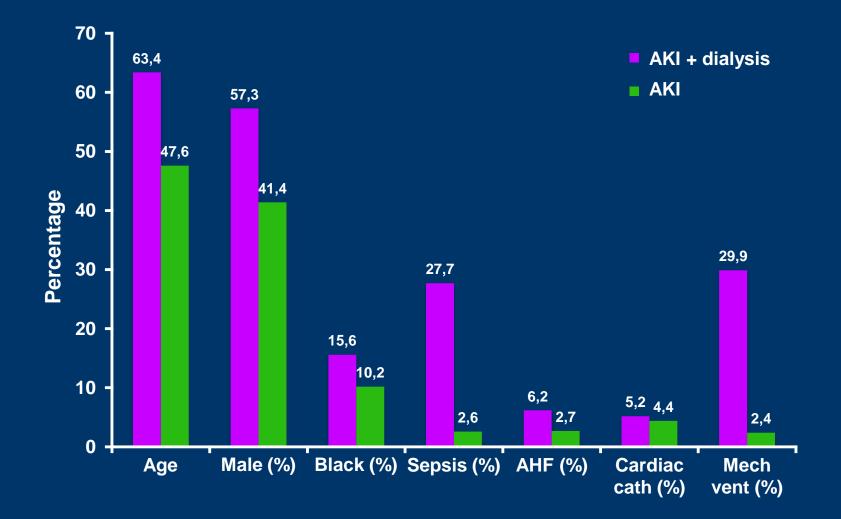
Increasing incidence of AKI: rates of AKI by age and dataset (US)

United States Renal Data System Annual Data Report 2013; Volume 1, Chapter 6 http://www.usrds.org/atlas.aspx

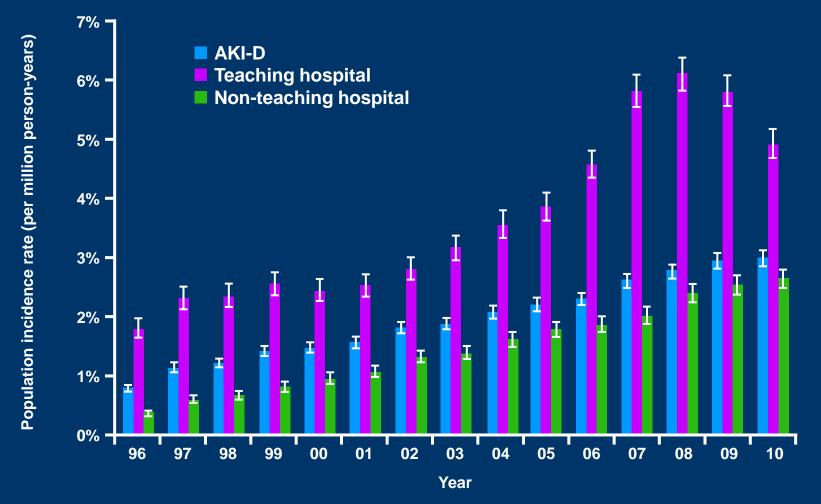
Hospitalised patients experiencing AKI (US veterans, 2006–2012)



Heung M, et al. ASN Renal Week 2014


Rising incidence of AKI

Incidence of dialysis-requiring AKI (US data 2000–2009)


Demographic and baseline disease characteristics of patients with dialysis-requiring AKI

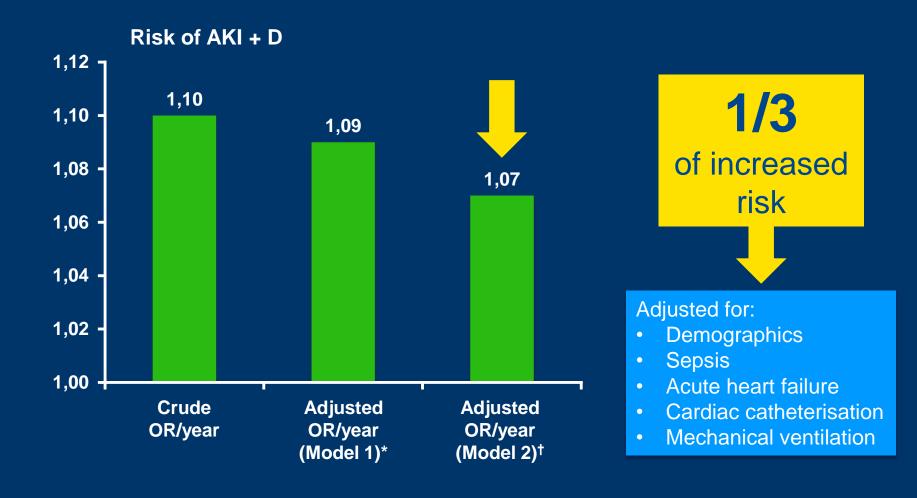
AHF, acute heart failure; Cardiac cath, cardiac catheterisation; Mech ventilation, mechanical ventilation

Hsu RK, et al. J Am Soc Nephrol 2013;24:37-42

Annual incidence of severe AKI has increased

Annual incidence of dialysis-requiring AKI (AKI-D) as a proportion of intensive care unit admissions, stratified by hospital teaching status

Wald R, et al. Am J Kidney Dis 2014; Dec 17 [Epub ahead of print]

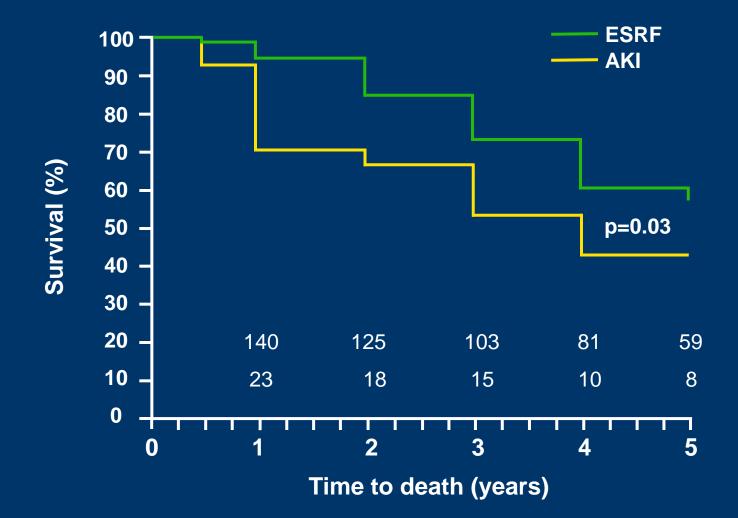

Over time, AKI-D mortality seems to be diminishing

The 90-day and 1-year all-cause mortality following dialysis-requiring AKI, by era

Outcome	<mark>1996–2000</mark> (n=4771)	<mark>2001–2005</mark> (n=6820)	<mark>2006–2010</mark> (n=9643)
Death up to day 90			
N (%)	2381 (49.9)	3115 (45.7)	4345 (45.0)
Adjusted HR (95% CI)	1.00 (reference)	<mark>0.8</mark> (0.84–0.93)	<mark>0.83</mark> (0.79–0.87)
Death up to day 365			
N (%)	2728 (57.2)	3663 (53.7)	5096 (52.8)
Adjusted HR (95% CI)	1.00 (reference)	<mark>0.90</mark> (0.85–0.94)	<mark>0.84</mark> (0.80–0.88)

Wald R, et al. Am J Kidney Dis 2014;

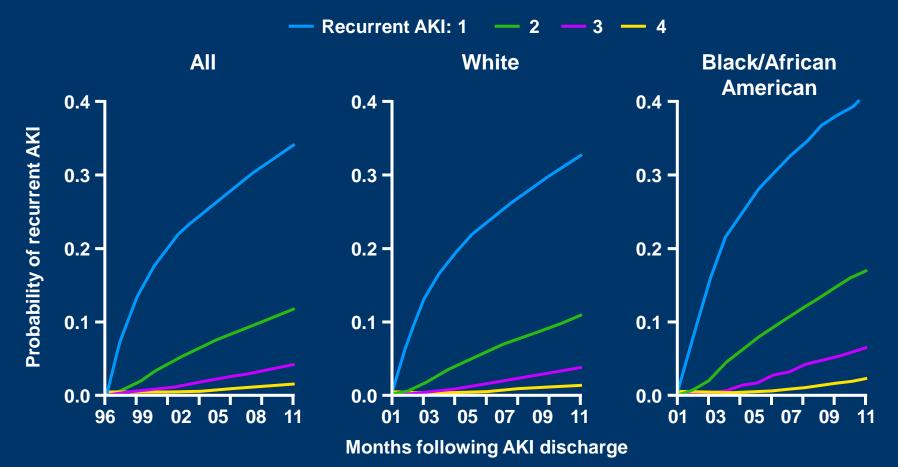
Risk of AKI-D among hospitalised US patients (2000–2009)



OR, odds ratio

*Adjusted for age, sex and race; [†]adjusted for age, sex, race, sepsis, acute heart failure, cardiac catheterisation and mechanical ventilation

Hsu RK, et al. J Am Soc Nephrol 2013;24:37–42

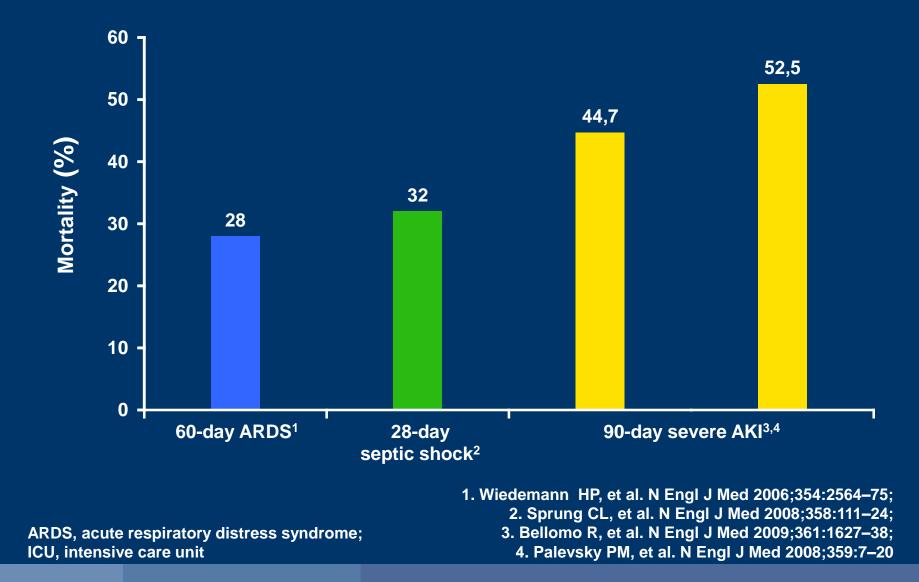

ESRF after acute renal failure: effect on survival

Age 50–64 years ESRF, end-stage renal failure

Bhandari S, Turney JH. QJM 1996;89:415-21

Probability of a recurrent AKI re-hospitalisation in Medicare patients, by number of recurrent events and race (2010–2011)

United States Renal Data System Annual Data Report 2013; Volume 1, Chapter 6 http://www.usrds.org/atlas.aspx

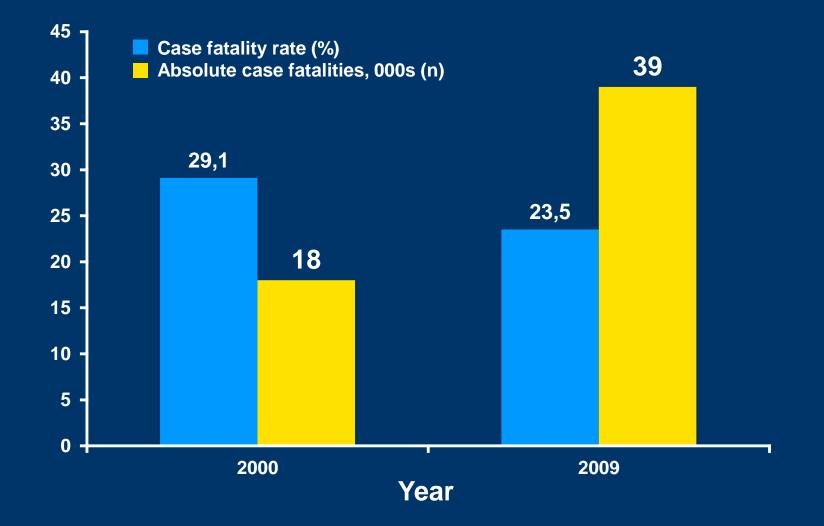

Medicare AKI patients aged 66 and older

The consequences of AKI

- AKI-associated mortality is high, and greater than other acute serious conditions
 - Adverse outcomes are mitigated when severity is less and duration of AKI is shorter
 - But we currently don't have measures to further decrease severity or shorten duration

Xue JL, et al. J Am Soc Nephrol 2006;17:1135–42; Uchino S, et al. Intensive Care Med 2007;33:1563–70; Palevsky PM, et al. N Engl J Med 2008;359:7–20

AKI-associated mortality is more severe than other common ICU conditions

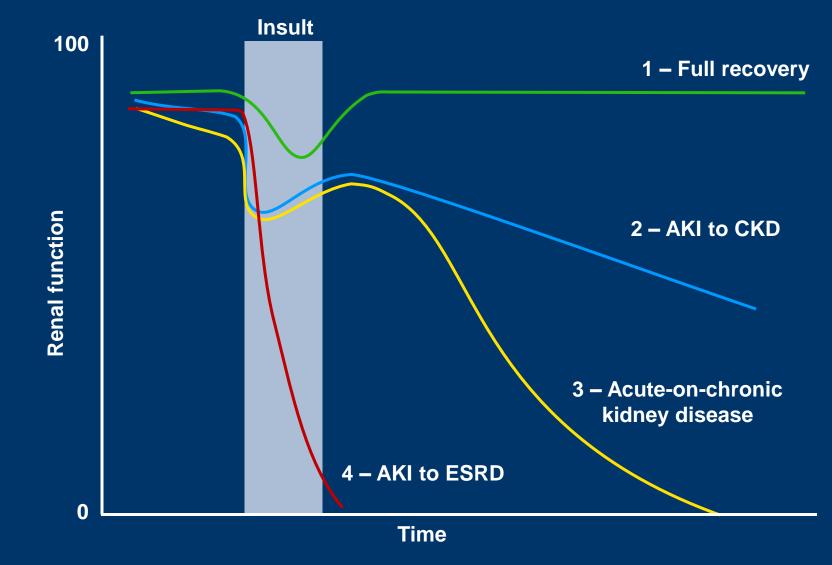


The consequences of AKI

- AKI-associated mortality is high, and greater than other acute serious conditions¹⁻³
- We need new research to:
 - Identify effective AKI management strategies
 - Identify strategies to improve kidney recovery

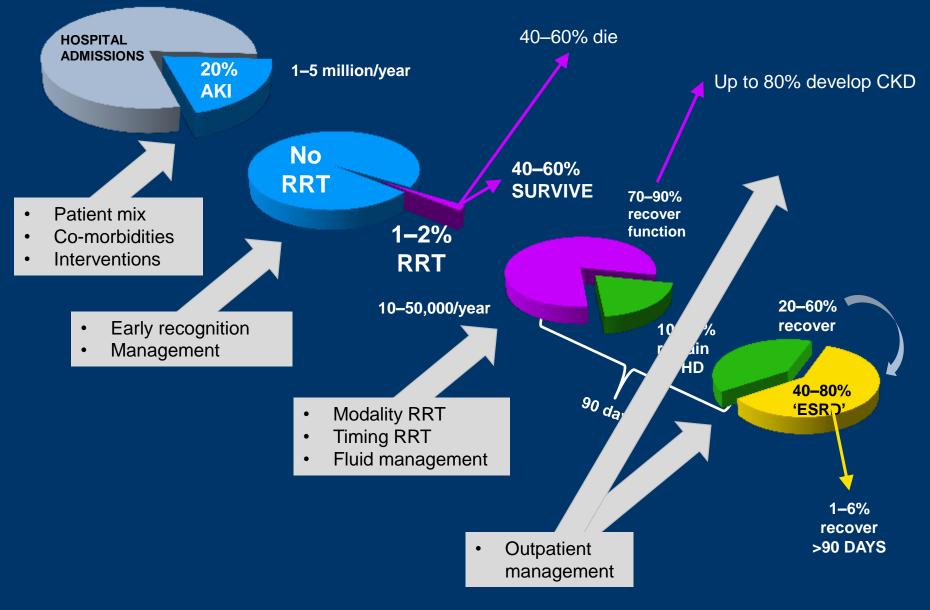
Xue JL, et al. J Am Soc Nephrol 2006;17:1135–42;
Uchino S, et al. Intensive Care Med 2007;33:1563–70;
Palevsky PM, et al. N Engl J Med 2008;359:7–20

Although case fatality rate is lower, absolute number of deaths increased



Hsu RK, et al. J Am Soc Nephrol 2013;24:37–42

The consequences of AKI

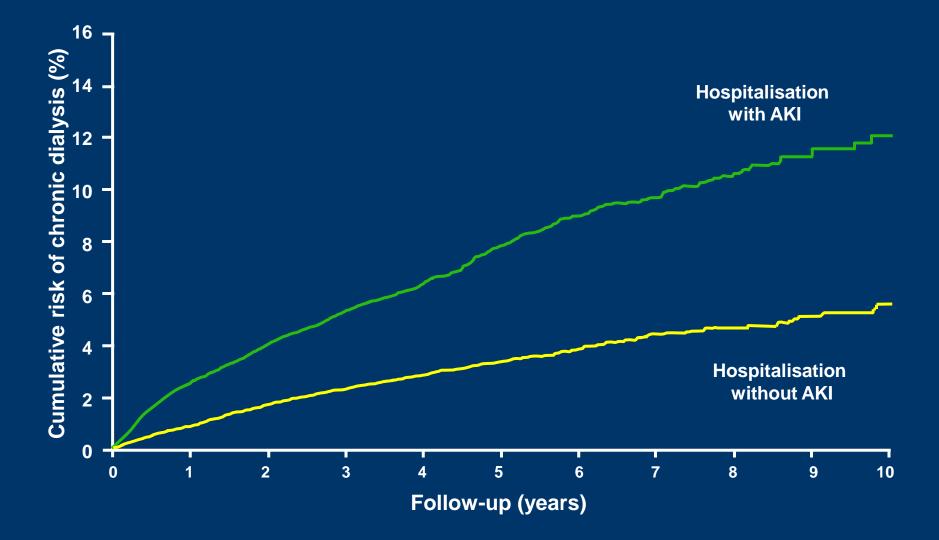

- Kidney function recovery in AKI-D is best studied in the context of ICU stay
 - 10–30% of AKI-D survivors remain dialysis-dependent at discharge
 - Majority of evidence: B.E.S.T. study (n=1,006, 54 ICUs, 23 countries): 15% survivors were RRT-dependent at hospital discharge

Natural history of AKI

Cerdá J, et al. Clin J Am Soc Nephrol 2008;3:881-6

Natural history of AKI-D

Cerdá J, et al. Clin J Am Soc Nephrol 2015


The consequences of AKI-D

- Kidney function recovery in AKI-D post discharge is poorly understood
 - By convention, 90 days is an important time point because it (usually) defines when ESRD has been reached
 - Continued RRT dependence up to 90 days ranges between 16–29%

Long-term, patients with AKI-D, who become independent within 90 days, experience multiple complications:

- CKD and ESRD
- Bone fractures
- Upper GI bleed
- Stroke
- Cardiovascular events
- Death

Severe AKI is associated with CKD

Wald R, et al. Am J Med 2012;125:585–93

AKI increases risk of CKD and death post-discharge

Risk of chronic dialysis, all-cause mortality and rehospitalisation among hospitalised patients with acute kidney injury versus hospitalised patients with no acute kidney injury

Acute kidney injury in the index hospitalisation (n=41,327)		No acute injury in the index hospitalisation (n=41,327)		Hazard ratio (95% CI)		
Outcome	Number of events (%)	Incidence rate per 100 person-years	Number of events (%)	Incidence rate per 100 person-years	Unadjusted*	Adjusted [†]
Chronic dialysis	1876 (4.5)	1.78	839 (2.0)	0.74	2.66 (2.39–2.95)	2.70 (2.42–3.00)
All-cause mortality	16,897 (40.9)	15.34	16,742 (40.5)	14.51	1.09 (1.06–1.13)	1.10 (1.07–1.13)
Rehospitalisation	26,387 (63.8)	44.93	24,372 (59.0)	37.18	1.20 (1.17–1.22)	1.21 (1.18–1.24)

*Reflects the effect of acute kidney injury versus matched individuals without kidney injury [†]Further adjusted for age (continuous in years) and the propensity score for acute kidney injury

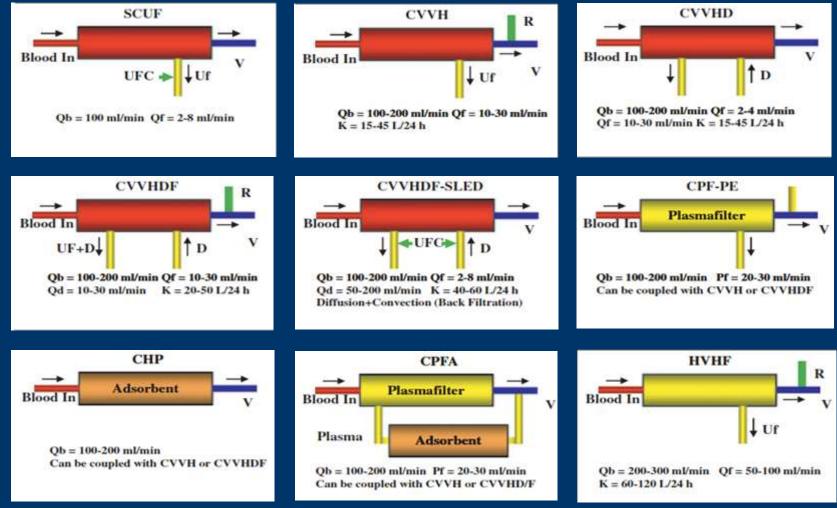
Wald R, et al. Am J Med 2012;125:585-93

Long-term outcomes of patients with AKI-D who become independent within 90 days

- Large cohort data suggest that 1 in every 12 AKI-D survivors who become RRT-independent will eventually need long term dialysis within 3–5 years^{1,2}
- Therefore, 90-day post-discharge nephrology care is essential
 - Avoid progression
 - Prepare for ESKD

What management factors affect recovery?

- No single management strategy has been proven beneficial to promote recovery
- The lack of evidence-based clinical guidelines is concerning

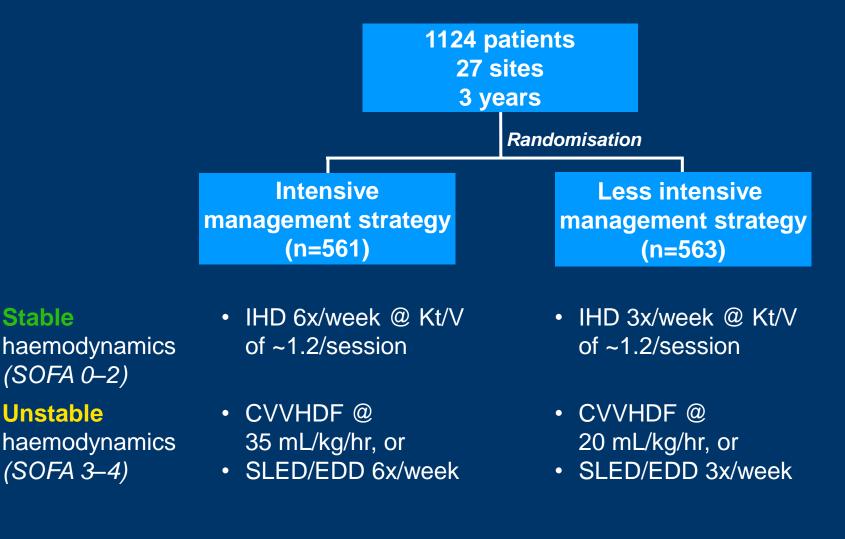

What management factors affect recovery?

- Do modifications in RRT hasten recovery?
 - Modality
 - Fluid overload
 - Timing of RRT
 - Dialysis dose
 - Anticoagulation strategies
 - Dialysis membranes

Considerations in renal replacement therapy for AKI

Consideration	Components	Varieties
Dialysis modality	Intermittent haemodialysis Continuous renal replacement therapies Peritoneal dialysis	Daily, every other day, SLED AV, VV
Dialysis biocompatibility Dialysis performance	Membrane characteristics Efficiency Flux	
Dialysis <mark>delivery</mark>	Timing of initiation Intensity of dialysis Adequacy of dialysis	Early, late Prescription vs delivery Dialysis dose

Modalities of CRRT


CAVH, continuous arterio-venous haemofiltration; CHP, continuous haemoperfusion; CPFA, plasma filtration coupled with adsorption; CPF-PE, continuous plasmafiltration-plasma exchange; CVVH, continuous veno-venous haemofiltration; CVVHD, continuous veno-venous haemodialysis; CVVHDF, continuous veno-venous haemodiafiltration; CVVHDF, continuous high-flux dialysis; D, dialysate; HVVF, high-volume haemofiltration; K, clearance, Pf, plasmafiltrate flow; Qb, blood flow; Qd, dialysate flow; Qf, ultrafiltration rate; R, replacement; SCUF, slow continuous ultrafiltration; UFC, ultrafiltration control system

Cerdá J, Ronco C. Semin Dial 2009;22:114–22

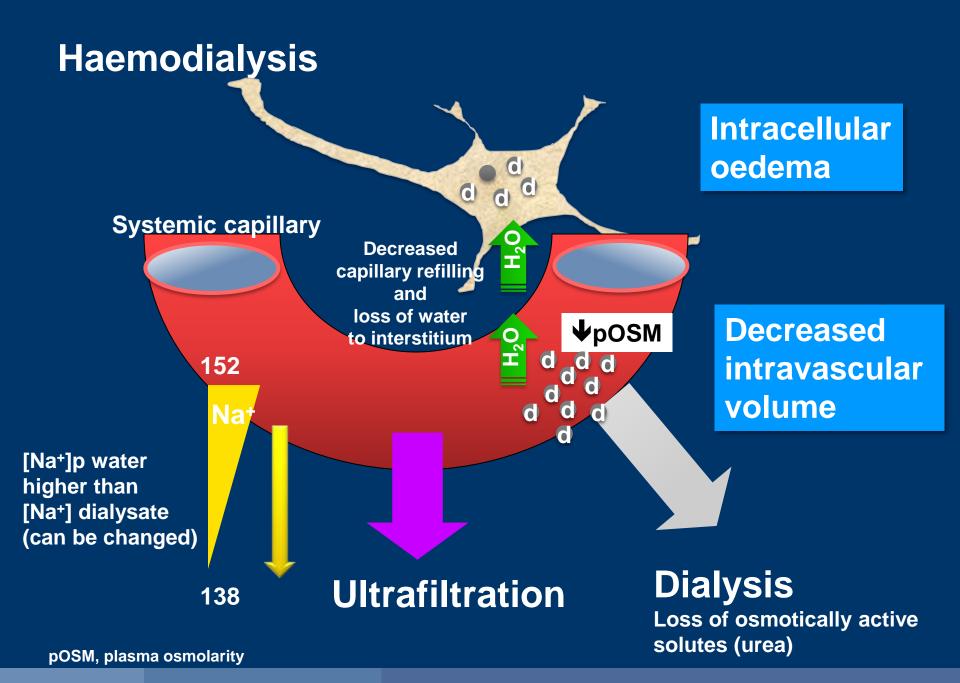
Indications for specific RRT modalities

Therapeutic Goal	Haemodynamics	Preferred therapy
Fluid removal	Stable	Intermittent isolated UF
	Unstable	Slow continuous UF
Urea clearance	Stable	Intermittent haemodialysis
	Unstable	CRRT
		Convection: CAVH, CVVH
		Diffusion: CAVHD, CVVHD
		Both: CAVHDF, CVVHDF
Severe hyperkalaemia	Stable/unstable	Intermittent haemodialysis
Severe metabolic acidosis	Stable	Intermittent haemodialysis
	Unstable	CRRT
Severe hyperphosphoraemia	Stable/unstable	CRRT
Brain oedema	Unstable	CRRT

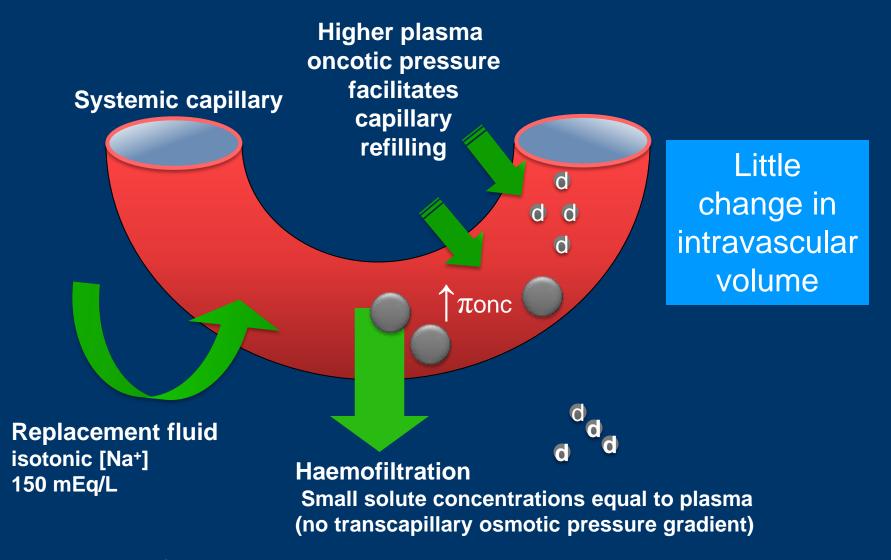
VA/NIH Acute Renal Failure Trial Network (ATN) study

SOFA, sequential organ failure assessment; EDD, extended daily dialysis

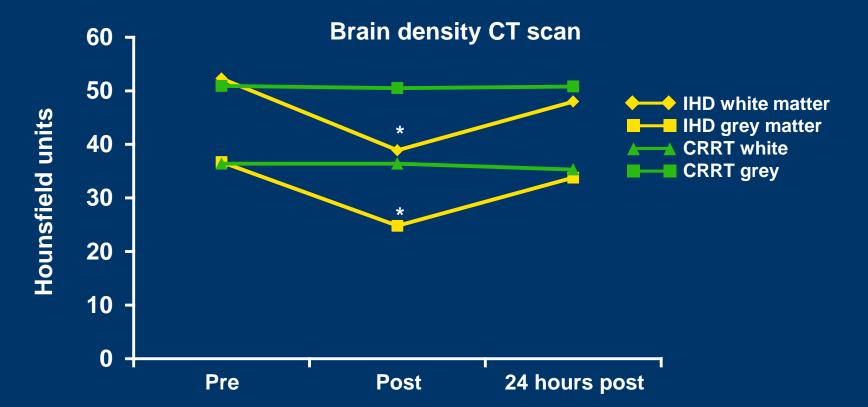
Palevsky PM, et al. N Engl J Med 2008;359:7-20


Haemodynamic stability during haemofiltration

Intermittent haemodialysis


- Fluid removal rate 12.5 mL/min = 3 L fluid removal over 4 hours
- Continuous haemofiltration
 - Fluid removal rate 2 mL/min = 3 L fluid removal over 24 hours

If more fluid must be removed


- To increase from 3 to 4 L/day:
 - IHD increases UFR 12.5 to 16.7 mL/min = 750 to 1002 mL/hr
 - CRRT increases UFR 2 to 2.7 mL/min = 120 to 162 mL/hr

Haemofiltration

Brain density changes during renal replacement in critically ill patients with acute renal failure: continuous HF vs. IHD

*p <0.01 Crossover, prospective, randomised study (n=12) CT, computed tomography

Ronco C, et al. J Nephrol 1999;12:173-8

- Do modifications in RRT hasten recovery?
 - Modality
 - CRRT generally considered superior to IHD to promote recovery
 - Better haemodynamic stability
 - Data are inconclusive


CRRT, continuous renal replacement therapy; IHD, intermittent haemodialysis Manns B, et al. Crit Care Med 2003;31:449–55; Mehta RL, et al. Kidney Int 2001;60:1154–63; Jacka MJ, et al. Can J Anaesth 2005;52:327–32; Palevsky PM, et al. Curr Opin Crit Care 2005;11:548–54; Uchino S, et al. Int J Artif Organs 2007;30:281–92; Bell M, et al. Intensive Care Med 2007;33:773–80; Augustine JJ, et al. Am J Kidney Dis 2004;44:1000–7; Lins RL, et al. Nephrol Dial Transplant 2009;24:512–8

Do modifications in RRT hasten recovery? Modality

Outcomes for patients with AKI surviving to 90 days, initiated on CRRT versus IHD

	CRRI	(n=2004)	IHD (n=2004)			
Outcome	n (%)	Incidence rate per 100 person-years	n (%)	Incidence rate per 100 patient-years	Hazard ratio (95% CI) for CRRT vs IHD	р
Chronic dialysis	435 (22)	6.5	533 (27)	8.2	<mark>0.75</mark> (0.65–0.87)	<0.0001
Death	883 (44)	11.2	905 (45)	11.4	<mark>1.02</mark> (0.91–1.14)	0.73

Modality appears associated with recovery

initiation of RRT, initially treated with CRRT or IHD

Wald R, et al. Crit Care Med 2014;42:868-77

What management factors affect recovery? MODALITY – Meta-analysis

Dialysis dependence among survivors

	IRRT		CRRT			Risk ratio	Risk ratio		
Study or subgroup	Events	Total	Events	Total	Weight (%)	M–H, Random, 95% Cl	M–H, Random, 95% (
1.1.1 Observational									
Andrikos 2009	1	4	5	33	1.5	1.65 [0.25, 10.81]			
Bagshaw 2006	15	42	12	54	7.0	1.61 [0.84, 3.06]			
Bell 2007	26	158	78	944	9.8	1.99 [1.32, 3.00]		_	
CartinCeba 2009	256	555	26	229	10.3	4.06 [2.80, 5.90]			
Chang 2004	4	44	1	11	1.3	1.00 [0.12, 8.08]			
Elsevier 2010	37	175	13	98	7.7	1.59 [0.89, 2.85]			
Garcia-Fernandes 2011	0	16	0	55		Not estimable			
Gonwa 2001	1	6	4	25	1.4	1.04 [0.14, 7.71]			
Jacka 2005	9	14	3	24	3.5	5.14 [1.66, 15.89]			
Lin 2009	11	54	10	83	5.7	1.69 [0.77, 3.71]			
Lins 2006	9	37	1	4	1.6	0.97 [0.16, 5.83]			
Marshall 2012	5	56	2	16	2.1	0.71 [0.15, 3.34]			
Park 2005	37	83	1	9	1.5	4.01 [0.62, 25.86]			
Swartz 2005	24	110	10	64	6.7	1.4 [0.71, 2.73]			
Uchino 2007	37	110	52	360	10.5	2.33 [1.62, 3.35]			
Waldrop 2005	7	12	6	14	5.8	1.36 [0.63, 2.94]			
Subtotal (95% CI)		1476		2023	76.4	1.99 [1.53, 2.59]	· · · · · · · · · · · · · · · · · · ·		
Total events	479		224						
Test for overall effect: Z 1.1.2 Randomised c	ontrolled t	rials						_	
Abe 2010	2	25	3	19	1.8	0.51 [0.09, 2.74]			
Augustine 2004	8	12	8	13	7.6	1.08 [0.60, 1.95]			
Kumar 2004	3	12	1	8	1.3	2.00 [0.25, 15.99]		_	
Lins 2009	15	60	11	65	6.5	1.48 [0.74, 2.96]			
Mehta 2001	3	43	4	29	2.4	0.51 [0.12, 2.09]			
UehlingeR 2005	1	27	1	37	0.8	1.37 [0.09, 20.95]			
Visonneau 2006	6	61	4	61	3.1	1.5 [0.45, 5.05]			
Subtotal (95% CI)		24		232	23.6	1.15 [0.78, 1.68]			
Total events	38		32						
Heterogeneity: Tau ² = 0.0			0.78); l ² = 0%						
Test for overall effect: Z	= 0.71 (p = 0.	.48)							
Total (95% CI)		1716		2555	100.0	1.73 [1.35, 2.20]	•		
Total events	517		256						
Heterogeneity: Tau ² = 0. ⁻ Test for overall effect: Z Test for subgroup differe	= 4.36 (p <0.0	00001)				0.01	0.1 1 Favours IRRT F	∎ 10 avours CRF	1 RT
RT, intermittent					Schnei	der AG, et al. Inter	sive Care Med 20	13:39:987	_97

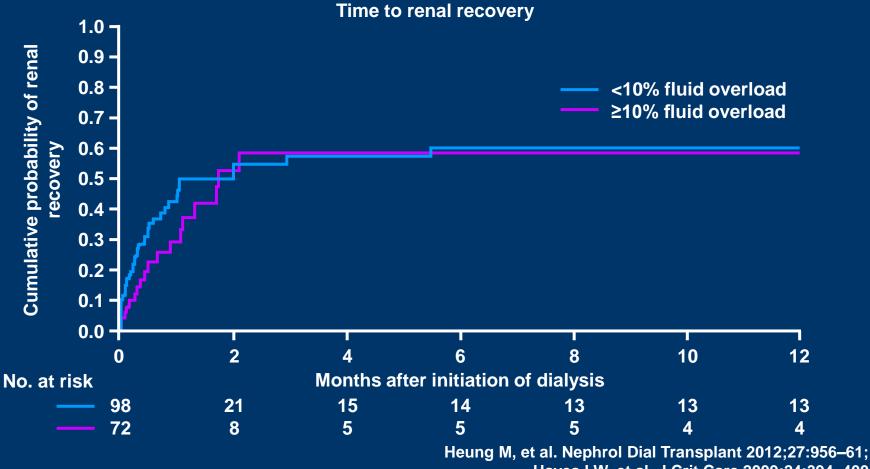
- Do modifications in RRT hasten recovery?
 - Modality
 - Association is physiologically plausible:
 - Animal models show lost autoregulation of blood flow during AKI
 - Hypotension likely induces repeated damage
 - Renal biopsies in patients with IHD show areas of new ischemia and tubular necrosis, absent in patients treated with CRRT

Why is CRRT associated with better haemodynamic stability?

- Maintenance of intravascular compartment volume
 - Prolonged treatments permit lower fluid removal rates
 - IHD: 3 L in 3 hours = 1 L/h UF rate
 - CRRT: 3 L in 24 hours = 0.125 mL/h UF rate
 - Urea diffusion is faster with IHD than CRRT
 - IHD: Urea clearance ~160 mL/min
 - CRRT: Urea clearance ~15–30 mL/min
 - Convective sodium removal rate [haemofiltration/heamodiafiltration] is less than diffusive removal rate [haemodialysis]
- Decreased core temperature
- Avoidance of 'myocardial stunning' described in IHD

 Convective removal of inflammatory mediators may contribute to hemodynamic stability

Initiating a new CRRT program: "What is the evidence?"


- Timing of initiation
 - ? benefit of early vs. late initiation: next most important study
 - No RCT available
- Modality
 - No RCT demonstrates differences
 - Design problems: sample size, randomisation
 - Study will never be done again
- Dose
 - Ronco: Yes
 - ATN: No
 - RENAL: No
 - Are studies really comparable: convection vs diffusion
 - Can you realistically deliver the minimum dose in your critically ill patient?
- Haemodynamic stability
 - Brain oedema
 - Other non-renal apps
 - Renal functional recovery
- Renal functional recovery
- Cost

RCT, randomised controlled trial

- Do modifications in RRT hasten recovery?
 - Modality
 - CRRT generally considered superior to IHD to promote recovery in observational studies
 - Clinical trials need to address this question

- Do modifications in RRT hasten recovery?
 - Fluid overload
 - Initiation of dialysis to avoid fluid overload may have a beneficial effect on recovery
 - Initiation of RRT at >20% fluid overload may delay recovery

- Do modifications in RRT hasten recovery?
 - Fluid overload

Hayes LW, et al. J Crit Care 2009;24:394-400

- Do modifications in RRT hasten recovery?
 - Timing of RRT
 - Optimal timing is unknown
 - Two systematic reviews found no benefit in 'early' initiation^{1,2}
 - What is timing?

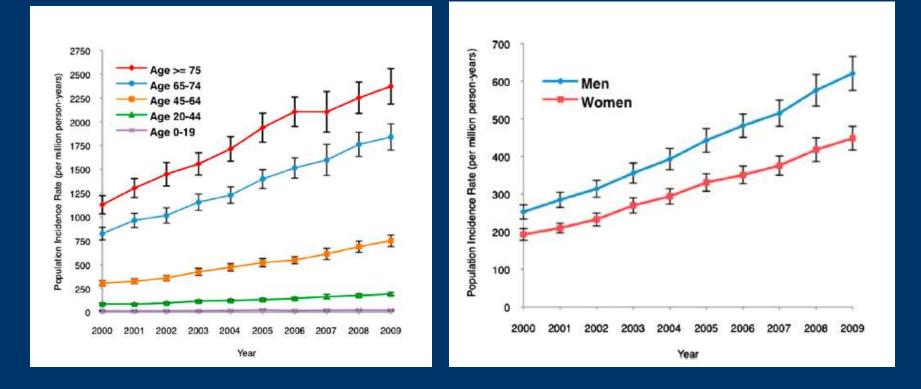
Timing of initiation of RRT

Reported RRT independence

		Events,	Events,	%	
Study	OR (95% CI)	Early	Late	Weight	
Bouman 2002	- 1.66 (0.65, 4.27)	22/36	17/35	15.28	
Sugahara 2004 —————	0.07 (0.01, 0.44)	2/14	10/14	7.04	
Bagshaw 2009	0.79 (0.57, 1.09)	74/619	91/618	23.10	
Bagshaw 2010	1.49 (0.80, 2.77)	30/117	22/117	19.53	
Gettings 1999	0.36 (0.14, 0.89)	11/59	16/41	15.73	
lyem 2009	0.13 (0.01, 2.57)	87/90	95/95	3.42	
Shiac 2009	0.39 (0.16, 0.94)	10/47	21/51	15.90	
Overall (I-squad = 69.6%, p=0.003)	0.62 (0.34, 1.13)	236/962	271/971	100.00	
0.01 0.1 1	10				
Early better	Late better	Karvellas CJ, et al. Crit Care 2011;15:R72;			

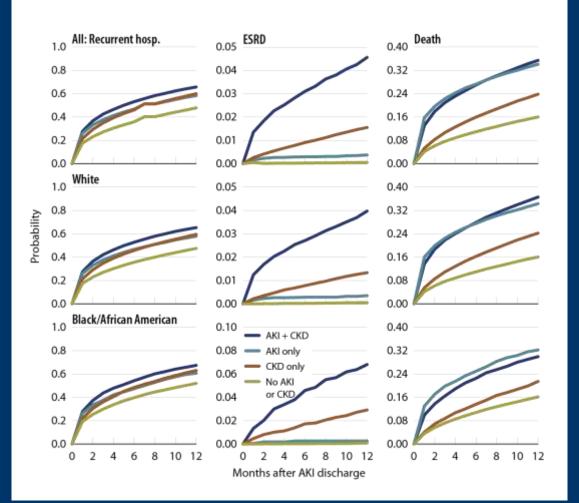
Seabra VF, et al. Am J Kidney Dis 2008;52:272-84

- Do modifications in RRT hasten recovery?
 - Dialysis dose
 - A higher dose does not improve recovery
 - Meta-analysis of the effects of intensity show no effect on recovery

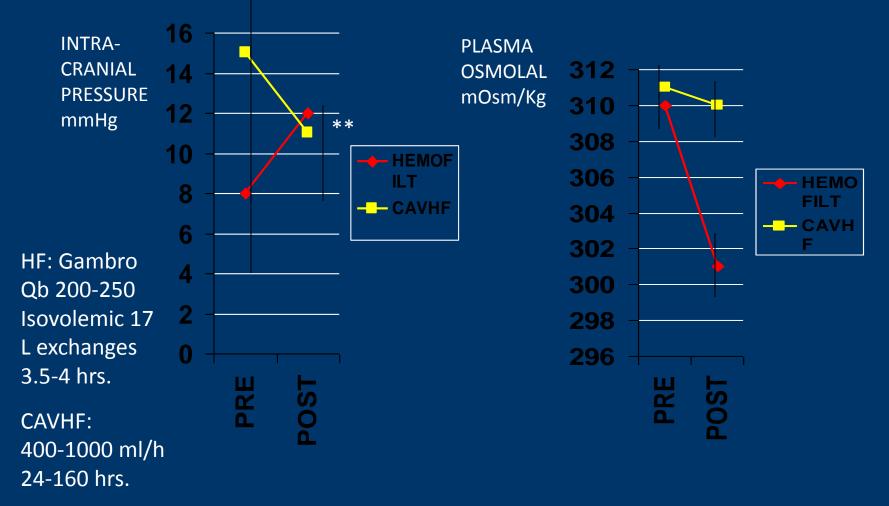

- Do modifications in RRT hasten recovery?
 - Dialysis membrane
 - Systematic Cochrane review demonstrates no benefit

Conclusions

- AKI-D is associated with severe morbidity and short- and long-term consequences
- AKI of lesser severity or duration is associated with better outcomes
- Significant methodological constraints limit understanding
- Haemodynamically unstable AKI patients may benefit from continuous RRT modalities
- RRT modality, timing and fluid management may promote better kidney recovery


Note to Dr Cerdá – suggest removing this slide

requiring AKI


Hsu RK, et al. J AmSoc Nephrol 2013;24:37-42

death following AKI hospitalisation by race (2010)

Note to Dr Cerdá – suggest removing this slide

haemofiltration in oliguric patients with grade IV hepatic encephalopathy

